

SR 400 (I-4) Project Development and Environment (PD&E) Study FM No.: 432100-1-22-01

Location Hydraulic Report

Segment 1: State Road 400 (SR 400)/Interstate 4 (I-4) from West of CR 532 (Osceola/Polk County Line) to West of SR 528 (Beachline Expressway)

Osceola County (92130) and Orange County (75280)

September 2016

HNTB Corporation 610 Crescent Executive Court Suite 400 Lake Mary, FL 32746

Professional Engineer Certificate

I hereby certify that I am a registered professional engineer in the State of Florida practicing with HNTB Corporation, Inc., a corporation authorized to operate as an engineering business, EB#6500, by the State of Florida, Department of Professional Regulation, Board of Professional Engineers, and that I have reviewed or approved the evaluation, findings, opinions, conclusions, or technical advice hereby reported for SR 400 (I-4) Project Development and Environment Study for the Florida Department of Transportation in Osceola and Orange County, Florida.

This Location Hydraulic Report (LHR) includes a summary of data collection efforts, floodplain impact estimates, limited cross drain evaluations, and an overall drainage review prepared for the conceptual analyses for the SR 400 (I-4) widening and extension from west of the Polk/Osceola County Line in Polk County to west of SR 528 in Orange County.

I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of transportation engineering and planning as applied through professional judgments and experience. This document is for planning purposes only and is not to replace any effort required for final design.

SIGNATURE:

NAME:

Sanam Rai, P.E.

FIRM:

HNTB Corporation

P.E. No.:

69089

DATE:

September 2016

TABLE OF CONTENTS

1.0)	Intro	oduction	1
2.0)	Proje	ect Description and Purpose	3
2	2.1	Pro	pposed Recommended Typical Section	5
3.0)	Desig	gn Criteria	5
3	3.1	Cul	vert Design	5
3	3.2	Flo	odplains/Floodways	6
4.0)	Site	Conditions	6
4	1.1	Soi	ls	6
4	1.2	Lar	nd Use	. 10
	4.	2.1	Existing Land Use	. 10
	4.	2.2	Future Land Use	. 10
4	1.3	Cro	oss Drains	. 13
	4.	3.1	Existing Conditions	. 13
	4.	3.2	Proposed Conditions	. 14
4	1.4	Bri	dge Structures	. 14
	4.	4.1	Existing Condition	. 14
	4.	4.2	Proposed Condition	. 15
4	1.5	Flo	odplain/Floodways	. 15
5.0)	Reco	ommendations and Conclusions	.17
5	5.1	Cro	oss Drains	. 17
5	5.2	Brid	dge Structures	. 17
5	5.3	Pro	oject Classification	. 17
5	5.4	Pro	pject Summary	. 18

LIST OF TABLES

Table 1:	SCS Soil Survey Information	7
Table 2:	Existing Cross Drains	13
Table 3:	Proposed Cross Drains	14
	Existing Bridges	
	LIST OF FIGURES	
Figure 1:	Project Location Map	4
Figure 2:	Soil Survey Map	8
Figure 3:	USGS Quadrangle Map	9
Figure 4:	Existing Land Use Map	11
Figure 5:	Future Land Use Map	12
Figure 6:	FEMA Flood Insurance Rate Map	16

APPENDICES

Appendix A – Straight Line Diagrams

Appendix B – Cross Drain Calculations

Appendix C – Correspondence

Appendix D – Back-up Permit Documentation

1.0 Introduction

The proposed improvements to I-4 include widening the existing six lane divided urban interstate to a ten lane divided highway in order to improve traffic operations, enhance connectivity and improve mobility by providing travel choices to the motoring public. I-4 is an east-west limited access freeway which links the west and east coasts of Florida, from I-275 in Tampa to I-95 in Daytona Beach. I-4 spans across six counties in Central Florida, traversing through many cities including Lakeland, Celebration, Orlando, Altamonte Springs, Sanford and DeLand. I-4 is a critical component of Florida's Strategic Intermodal System (SIS) which links seaports, rail, airports and other intermodal facilities. This aspect of I-4's significance is evidenced through connectivity provided by major junctions with I-275, I-75, SR 429 (Daniel Webster Western Beltway), SR 417 (Southern Connector/Central Florida Greeneway/Seminole Expressway), SR 528 (Martin Andersen Beachline Expressway), SR 91 (Florida's Turnpike), SR 408 (Spessard Lindsay Holland East-West Expressway) and I-95.

I-4 serves as the primary corridor in the movement of people and freight between major population, employment and activity centers in the Central Florida region. When the entire Interstate was fully opened in the early 1960's, it was designed to serve intrastate and interstate travel by providing a critical link between the east and west coasts of Central Florida. Although this role continues to be a crucial transportation function of I-4, the highway also serves large volumes of local and commuter traffic with shorter trip distances. Today, the highway serves as the primary link between hotel/resort complexes and tourist attractions such as Walt Disney World, Universal Studios, Sea World, the International Drive Resort Area and downtown Orlando. Since I-4 is the only north-south limited access facility that is centrally located between the predominant employment centers and the major suburbs to the north, it has become the primary commuting corridor in the Central Florida metropolitan area.

Growth in Central Florida over the past decades has made it difficult for the transportation system to accommodate travel demand. Traffic congestion and crash incidents have resulted in major delays on the Interstate as well as other arterials surrounding the corridor. Increased congestion levels are experienced outside of the typical morning and afternoon rush-hour periods, affecting mobility levels for more hours of the day and impacting other non-commuter/non-weekday travel. The congestion on I-4 is further evidenced by the less than desirable levels of service on the Interstate as well as the crossroads.

Projections of future population and employment in the region indicate that travel demand will continue to increase well into the future. The ability to accommodate the new travel patterns resulting from growth must be provided to sustain the region's economy. Without the improvements, extremely congested conditions are expected to occur for extended periods of time in both the morning and evening peak periods. Due to these congested conditions, user travel times will continue to increase, the movement of goods through the urban area will be slower, and the deliveries of goods within the urban area will be forced to other times throughout the day. The need for improvements to I-4 is illustrated by the important transportation roles I-4 serves to the Central Florida region and the State of Florida. If no improvements are made to the Interstate, a loss in mobility for the area's residents, visitors, and commuters can be expected, resulting in a severe threat to the continued viability of the economy and the quality of life.

This reevaluation involves revising the original design concept showing 6 GUL + 4 SUL from CR 532 to southwest of World Drive , 6 GUL + 2 HOV lanes from southwest of World Drive to northeast of Lake Avenue and 6 GUL + 4 HOV lanes from northeast of Lake Avenue to SR 528, as recommended in the FONSI for SR 400 (I-4) from CR 532 (Polk/Osceola County Line to West of SR 528 (Beachline Expressway) (December 23, 1999), to the current proposed

design of four (4) Express Lanes. The Express Lanes are tolled lanes and will extend the full length of the project. The access to/from the tolled lanes will be evaluated as part of this effort to determine if changes are needed from the previously approved concept for access to/from the SUL/HOV Lanes. The original I-4 PD&E Studies involved physical separation between the general use lanes and the SUL/HOV lanes on I -4, with demand management in the HOV lanes. The original demand management strategy was to control the use of the HOV lanes by requiring a minimum number of occupants per vehicle to maintain an acceptable level of service (Level of Service D).

This reevaluation also addresses revising the demand management tool to convert the HOV lanes to tolled express lanes. The express lanes will be separated from the general use travel lanes by two shoulders with a barrier wall between the shoulders. A variable pricing tolling plan is proposed for the express lanes. The tolls will vary by time of day and day of week to maintain acceptable levels of service in the express lanes. The tolls will be collected electronically through existing E-Pass, SunPass and other systems currently in place in the Orlando metropolitan area. The conversion to Express Lanes will maintain the same right of way limits as documented previously and will not change the impacts to the social, natural or physical environment. An update to the Systems Access Modification Report (SAMR) prepared in January, 2013 is being completed in conjunction with this effort. The primary objective of this Location Hydraulic Report (LHR) is to evaluate the hydraulic conditions along the proposed corridor in the existing and proposed conditions. This evaluation shall be accomplished by assessing and quantifying all floodplain impacts and providing recommendations to offset any impacts. The results of this evaluation will provide FDOT with the information necessary to reach a decision on the type, design, and location of improvements that are required for the widening of SR 400 (I-4).

This report has been prepared in accordance with the requirements set forth in Executive Order 11988, "Floodplain Management", US DOT Order 5650.2, "Floodplain Management and Protection", and Federal-Aid Policy Guide 23 CFR 650A. The intent of these regulations is to avoid or minimize roadway encroachments within the 100-year (base) floodplain, where practicable, and to avoid supporting land use development, which is incompatible with floodplain values. This report provides preliminary information on designated floodplains, cross drains and potential floodplain impacts of the project on these areas.

General information regarding basin delineation, cross drain locations and culvert parameters used in the preparation of this report include the following:

- Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for Osceola County No. 12097C0035F and 12097C20040F and Orange County No. 12095C0395F, 12095C0405F, 12095C0415F and 12095C0585F (Figures 6 & 7).
- US Department of Agriculture (USDA) Soils Conservation Service (SCS) Soils Survey for Polk, Osceola and Orange County (Figure 2)
- US Geological Survey (USGS) Quadrangle Map (Figure 3)
- Florida Department of Transportation (FDOT) PD&E Manual, Part 2, Chapter 24 (revised January 2008)
- FDOT Drainage Manual (2015)
- 2012 SFWMD Basis of Review for Environmental Resource (ERP BOR)
- Existing Construction Plans
- Various Existing Permits
- Site Investigation

2.0 Project Description and Purpose

The Florida Department of Transportation (FDOT) is proposing to reconstruct and widen I-4 as part of the I-4 Ultimate concept. This involves the build-out of I-4 to its ultimate condition through Central Florida, including segments in Polk, Osceola, Orange, Seminole, and Volusia Counties. The concept design proposes the addition of two (2) new express lanes in each direction, resulting in a total of ten (10) dedicated lanes. The study area in this section from the Polk County/Osceola County Line to west of SR 528 includes the following interchanges: CR 532, SR 429, World Drive, SR 417, US 192/SR 530, W. Osceola Parkway, SR 536, SR 535, Daryl Carter Parkway and Central Florida Parkway, and provides for the required stormwater treatment with eighty-nine (89) potential pond sites along the corridor (See Figure 1: Project Location Map). The typical section will ensure that the design will be contained within the existing right-of-way with the exception of the pond sites. This alignment serves as the basis for the development of the proposed improvements outlined in the Location Hydraulic Report.

Figure 1: Project Location Map

2.1 Proposed Recommended Typical Section

The proposed improvements to I-4 include widening the existing six lane divided urban interstate to a ten lane divided highway. The typical section throughout Segment 1 will have three 12-foot general use travel lanes with 10-foot inside and 12-foot outside shoulders and two 12-foot express lanes with 4-foot inside and 10-foot outside shoulders in each direction. A barrier wall between the adjacent shoulders will separate the express lanes from the general use lanes. Twelve-foot auxiliary lanes will be provided in some areas in both the eastbound and westbound directions. The typical section includes a minimum 44-foot rail envelope in the median within a minimum 300 foot right of way.

While the overall typical section remains consistent throughout Segment 1, there are some areas along the Segment 1 corridor that will have special sections. Special cross sections were developed to meet the needs of the project due to right of way constraints, existing utility easements or other design considerations along the corridor. These special sections may include C-D roads, braided ramp systems, elevated express lanes or elevated general use lanes. Additionally, the median width may vary in certain locations to accommodate changes in the horizontal alignment due to crossroad support structures, water crossings or other features. In the area between World Drive and SR 417, the median is considerably wider than 44 feet to accommodate a future high speed rail station. The special sections along the Segment 1 corridor are identified as follows:

- I-4 Eastbound elevated express lanes between E. of SR 429 and W. of World Drive
- C-D system (Eastbound and Westbound) between World Drive and SR 417
- I-4 Eastbound elevated general use lanes with at grade C-D Road between SR 536 and SR 535
- I-4 Westbound elevated general use lanes between SR 536 and E. of Daryl Carter Parkway with at grade C-D Road between SR 536 and Central Florida Parkway

3.0 Design Criteria

The design of stormwater management facilities for this project is governed by the rules and criteria set forth by the South Florida Water Management District (SFWMD) and the FDOT. These criteria were drawn from the 2012 SFWMD Basis of Review for Environmental Resource (ERP BOR) and the 2015 FDOT Drainage Manual.

3.1 Culvert Design

- All cross drains, if applicable, shall be designed to have sufficient hydraulic capacity to convey the 50-year (Design Frequency) storm event. All culverts shall be analyzed for the base flood (100-year).
- Backwater shall not significantly change land use values unless flood rights are purchased.
- The headwater for design frequency conditions shall be kept at or below the travel lanes in compliance with the FDOT Drainage Manual.
- The highest tailwater elevation, which can be reasonably expected to occur coincident with the design storm event, shall be used (typically, crown of pipe is used).

- The minimum culvert size is 18" or its equivalent size.
- The design of all cross culverts shall comply with the guidelines set forth in the FDOT Drainage Manual, Chapter 4.

3.2 Floodplains/Floodways

- The proposed project may not cause a net reduction in flood storage within the 10-year floodplain.
- Structures shall cause no more than a one-tenth (0.1) of a foot increase in the 100-year flood elevation 500-feet upstream.
- Proposed construction shall not cause a reduction in flood conveyance capabilities.
- Best Management Practices (BMP's) shall be employed to minimize velocity to avoid undue erosion.
- The design of encroachments shall be consistent with standards established by FEMA.

4.0 Site Conditions

This project lies within FDOT District 5, Southwest Florida Water Management District (SWFWMD), South Florida Water Management District (SFWMD) and the Reedy Creek Improvement District (RCID). Wetlands, wildlife, soils conditions, land use, cross drains, and floodplains describe the site conditions present within the limits of this study. Involvement within wetlands and impact of wildlife are specifically addressed in two separate reports, "Wetlands Evaluation Report" and "Endangered Species Biological Assessment" prepared as part of this PD&E Study.

4.1 Soils

The Soil Survey of Polk, Osceola and Orange County, Florida, published by the United States Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) has been reviewed for the project vicinity. There are forty-one (41) different soil types located in the project area. Table 1 lists these soil types and their hydraulic properties. The Soil Survey Map for the project is illustrated in Figure 2.

Table 1: SCS Soil Survey Information

Soil Type	Hydrologic Soil Group
Adamsville sand (1)	Α
Arents (4)	А
Archbold fine sand (2)	А
Basinger fine sands (3, 5, 6, 36)	A/D
Candler sand (4, 7, 8)	А
Hontoon muck (15)	A/D
Immokalee fine sands (16, 20)	A/D
Myakka fine sand (22, 25)	A/D
Ona fine sand (26, 27)	B/D
Placid fine sand (33)	A/D
Placid and Myakka fine sand (25)	A/D
Pits (31, 33)	N/A
Pomello fine sand (34)	А
Pompano fine sand (37)	A/D
Riviera fine sand (38)	C/D
Samsula muck (13, 40)	A/D
Sanibel muck (42)	A/D
Seffner fine sand (43)	A/D
Smyrna fine sand (42, 44)	A/D
Smyrna and Myakka fine sand (17)	A/D
St. Johns fine sand (37)	B/D
St. Lucie fine sand (38)	Α
Tavares fine sand (15, 44, 46)	А
Tavares-Millhopper fine sands (47)	А
Urban land (50)	N/A
Vero fine sand (45)	N/A
Wauchula fine sand (46)	A/D
Zolfo fine sand (54)	А

Figure 2: Soil Survey Map

Based on a review of the Polk, Osceola and Orange County Florida United States Geographical Survey (USGS) quadrangle map, the existing ground surface elevations along the project alignment vary approximately from +75 to +125 feet NAVD. A reproduction of the USGS quadrangle map for the project vicinity is shown in Figure 3.

Figure 3: USGS Quadrangle Map

4.2 Land Use

4.2.1 Existing Land Use

Existing land use information within the SR 400 (I-4) PD&E Study is based on the existing land use map. The I-4 corridor varies with a mixture of uses. The southern half of the corridor is characterized by large portions of agricultural and recreational land uses on each side of the interstate. Along the southern end of the corridor, undeveloped parcels are designated for retail/office or non-residential use, non-agriculture acreage and residential land uses. The northern portion of the corridor consists largely of retail/office land uses intermixed with some vacant nonresidential parcels and agricultural use. Figure 4 illustrates the existing land use within the project area.

4.2.2 Future Land Use

Future land use along the I-4 corridor also varies greatly with a mixture of uses. The southern portion of I-4, through Polk County, consists of activity center, medium density residential, preservation and employment center uses. The southern portion of the corridor through Osceola County consists of commercial, planned development and conservation land uses. The northern portion of the I-4, through Orange County, is surrounded predominantly by mixed use parcels with some commercial and office use. The widening of I-4 will not alter the existing or future land uses in the area. Figure 5 illustrates the future land use within the project area.

Figure 4: Existing Land Use Map

Figure 5: Future Land Use Map

4.3 Cross Drains

4.3.1 Existing Conditions

There are fifteen (15) existing structures which act as cross drains within the study area. Table 2 depicts the existing cross culvert data obtained from the Straight Line Diagram of Road Inventory (Appendix A) pertinent to the project study area, as well as, existing permits and original construction plans. In the case where original construction plans were not found, cross drain invert elevations were obtained from existing permits and the original PD&E study. Some of the existing construction plans were in 1929 NGVD datum. A conversion of (-) 0.85 ft. was used to convert to the NAVD datum. During the design phase, survey and field verification will be necessary to determine the actual pipe lengths and culvert flow lines.

Table 2: Existing Cross Drains

			D	escriptio	n from Or	riginal Constru	ction Plans	
CD No.	Station	Count	Span	Rise	Туре	*Length		vation IAVD)
			(in)	(in)		(Ft)	US	DS
CD-1	614+12.71	2	36	36	RCP	213	111.36	111.25
CD-2	664+22.84	2	48	48	RCP	256	102.58	102.48
CD-3	680+00.00	2	108	84	CBC	262	92.11	91.77
CD-4	692+20.31	1	36	36	RCP	261	90.34	88.25
CD-5	698+00.00	4	144	96	CBC	260	84.27	83.56
CD-6	732+50.00	2	84	48	CBC	310	90.72	90.50
CD-7	761+00.00	1	42	42	RCP	227	84.42	82.97
CD-8	785+16.00	2	42	42	RCP	248	74.18	73.03
CD-9	863+00.00	2	84	48	CBC	583	75.70	75.50
CD-10	914+00.00	2	84	48	CBC	250	79.50	79.25
CD-11	984+00.00	2	84	60	CBC	477	82.45	81.65
CD-12	1083+18.65	2	36	36	RCP	415	83.44	82.45
CD-13	1138+19.00	2	30	30	RCP	247	96.10	94.85
CD-14	1202+15.00	1	48	48	RCP	241	99.57	98.35
**CD-15	1333+10.00							

Abbreviations: RCP – Reinforced Concrete Pipe, CBC – Concrete Box Culvert

Based on hydraulic calculations, cross drains CD-9 and CD-11 do not have the sufficient hydraulic capacity to convey the 100-year storm event in the existing condition. The 100 year headwater stage is shown as the critical elevation (roadway elevation) for the purposes of this report. Please refer to Appendix B for additional information.

^{*}Field Verify.

^{**} Existing information not found.

4.3.2 Proposed Conditions

Due to the proposed roadway widening, all of the cross drains will require total replacement. Through hydraulic analysis, it was determined that four (4) cross drains need to be upsized: CD-7, 8, 12, and 13. The remaining cross drains will require a change in slope to function adequately. All cross drains were analyzed using HY8 (Version 7.3) software. Table 3 depicts the results of the hydraulic analysis.

Table 3: Proposed Cross Drains

			D	escriptio	n from O	riginal Constru	ction Plans	
CD No.	Station	Count	Span	Rise	Туре	Length (Ft)	_	ation IAVD)
			(in)	(in)			US	DS
CD-1	614+12.71	2	36	36	RCP	328	111.80	110.80
CD-2	664+22.84	2	48	48	RCP	300	102.58	102.18
CD-3	680+00.00	2	108	84	CBC	353	92.11	91.77
CD-4	692+20.31	1	36	36	RCP	300	90.34	88.25
CD-5	698+00.00	4	144	96	CBC	392	84.27	83.16
CD-6	732+50.00	2	84	48	CBC	460	90.72	90.10
CD-7	761+00.00	1	48	48	RCP	404	84.42	82.97
CD-8	785+16.00	2	48	48	RCP	308	74.18	73.03
CD-9	863+00.00	2	84	48	CBC	583	75.70	75.20
CD-10	914+00.00	2	84	48	CBC	558	79.50	78.70
CD-11	984+00.00	2	84	60	CBC	581	82.00	80.90
CD-12	1083+18.65	2	42	42	RCP	612	83.44	82.45
CD-13	1138+19.00	2	36	36	RCP	356	96.10	94.85
CD-14	1202+15.00	1	48	48	RCP	372	99.57	98.20
**CD-15	1333+10.00							

Abbreviations: RCP - Reinforced Concrete Pipe, CBC - Concrete Box Culvert

4.4 Bridge Structures

4.4.1 Existing Condition

There are twenty nine (29) existing bridges located within the project corridor. Table 4 depicts the location and attributes of the existing bridges. Structure conditions and year of construction was provided in the original I-4 PD&E Study.

^{**} Existing information not found.

Table 4: Existing Bridges

Structure No.	Station	Description
B-1	634+00	I-4 WB over CR 532
B-2	634+00	I-4 EB over CR 532
B-3	706+00	Sinclair Road over I-4
B-4	735+50	SR 429 Ramp from EB I-4
B-5	738+50	SR 429 Ramp to EB I-4
B-6	748+00	Old Lake Wilson Road over I-4
*B-7	813+00	I-4 WB over Reedy Creek
*B-8	813+00	I-4 EB over Reedy Creek
B-9	847+00	World Drive EB over I-4
B-10	851+00	World Drive WB over I-4
B-11	945+00	SR 417 WB Ramp over I-4
B-12	967+00	I-4 EB Ramp from SR 530 over I-4
B-13	973+00	SR 530 SB over I-4
B-14	975+00	SR 530 NB over I-4
B-15	976+50	I-4 WB Ramp from SR 530 over I-4
B-16	978+00	I-4 EB Ramp to SR 530 over I-4
B-17	1034+50	Osceola Parkway SB over I-4
B-18	1036+00	Osceola Parkway NB over I-4
B-19	1060+00	I-4 EB CD Road
B-20	1066+00	I-4 WB CD Road
B-21	1088+00	SR 536 EB Ramp over I-4
B-22	1101+00	SR 536 SB over I-4
B-23	1102+00	SR 536 NB over I-4
B-24	1184+00	I-4 WB over SR 535
B-25	1184+00	I-4 EB over SR 535
B-26	1272+00	Daryl Carter Parkway (Fenton St.) over I-4
B-27	1332+00	Central Florida Parkway WB Ramp over I-4
B-28	1335+00	I-4 EB over Central Florida Parkway
B-29	1335+00	I-4 EB over Central Florida Parkway

^{*} Bridge crossing over Reedy Creek.

4.4.2 Proposed Condition

In the proposed condition, the existing bridges will be either widened or replaced to accommodate the widening of I-4 to its ultimate condition. Please refer to the Preliminary Engineering Report (PER) for additional information.

4.5 Floodplain/Floodways

The Federal Emergency Management Agency (FEMA) has developed Flood Insurance Rate Maps (FIRM) for Polk, Osceola and Orange County. According to FEMA Map Numbers 12105C0125F, 12097C0040F, 12097C0035F, 12095C0585F, 12095C0395F, and 12095C0415F, portions of the roadway are located within the 100-year floodplain. Based on the FEMA floodplain lines, the roadway widening will impact the floodplain on both sides of the roadway. The FEMA Flood Insurance Rate Maps for the project is provided in Figure 6.

Figure 6: FEMA Flood Insurance Rate Map

5.0 Recommendations and Conclusions

5.1 Cross Drains

There are fifteen (15) cross drains within the study area. Due to the proposed widening, the cross drains will require total replacement. The existing cross drains have been evaluated for headwater impacts to see if replacement is necessary. Through hydraulic analysis, it was determined that four (4) cross drains need to be upsized: CD-7, 8, 12, and 13.

5.2 Bridge Structures

There are twenty nine (29) existing bridges which will require expansion or widening to accommodate the widening of I-4 to its ultimate condition. Additional study will be required during the design and construction phase to determine the resultant scour for the bridges (B-7 & B-8) located at Reedy Creek. Please refer to the Preliminary Engineering Report (PER) for additional information.

5.3 Floodplains and Floodways

Floodplains are present along the project corridor and adjacent to some proposed ponds within the study limits; however, no floodways are located within the project area. Any impacts associated with the roadway widening will be compensated for in existing pond sites and/or proposed floodplain compensation ponds. Please refer to the Pond Siting Report (PSR) for additional information.

5.4 Project Classification

In accordance with FDOT's PD&E Manual, Part 2, Chapter 24, Section 24-2.1, Figure 24.1 "Floodplain" Statements, the proposed corridor has been evaluated to determine the impact of the proposed hydraulic modifications. Hydraulic improvements are grouped into six categories based upon the type of the hydraulic improvements and estimated floodplain impact. The proposed project can be best described in two (2) categories:

Category 3: Projects involving modification to existing drainage structures. The proposed project does not involve the replacement of any existing drainage structures or the construction of any new drainage structures. Projects that affect flood heights and flood limits, even minimally, may require further evaluation to support statements that emphasize the insignificance of the modifications (FDOT PD&E Manual, Part 1, Chapter 24). "The modifications to drainage structures included in this project will result in an insignificant change in their capacity to carry floodwater. This change will cause minimal increases in flood heights and flood limits. These minimal increases will not result in any significant adverse impacts on the natural and beneficial floodplain values or any significant change in flood risks or damage. There will not be a significant change in the potential for interruption or termination of emergency service or emergency evacuation routes. Therefore, it has been determined that this encroachment is not significant."

Category 4: Projects on existing alignment involving replacement of existing drainage structures with no record of drainage problems. The proposed project does not involve replacement activities that would reduce the hydraulic performance of existing facilities. Also, there should be no record of

drainage problems and no unresolved complaints from residents in the area (FDOT PD&E Manual, Part 1, Chapter 24). "The proposed structure will perform hydraulically in a manner equal to or greater than the existing structure, and backwater surface elevations are not expected to increase. As a result, there will be no significant adverse impacts on natural and beneficial floodplain values. There will be no significant change in flood risk, and there will not be a significant change in the potential for interruption or termination of emergency service or emergency evacuation routes. Therefore, it has been determined that this encroachment is not significant."

5.5 Project Summary

The proposed reconstruction and widening of SR 400 (I-4) involves adding two new lanes in each direction and providing stormwater management systems. There are fifteen (15) existing cross drains which will necessitate culvert replacement. There are twenty nine (29) bridges within the corridor, which may need to be replaced to meet the proposed geometry. The proposed alignment does impact the 100-year floodplain, as well as several existing pond sites. Any impacts associated with the roadway widening will be compensated for in existing pond sites and/or proposed floodplain compensation ponds. By complying with regulatory criteria, the implementation of this project will not adversely affect the area adjacent to the corridor and meets the expectations of the stakeholders.

APPENDIX A – STRAIGHT LINE DIAGRAMS

APPENDIX B – CROSS DRAIN CALCULATIONS

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

. W Ca		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.					D-1		
			Existi	ng	Propo	Proposed	
LOCATION		STA.	614+12	2.71	614+1		
WIDTH			3.00	FT	3.00	FT	
HEIGHT			3.00	FT	3.00	FT	
BARRELS			2	-1-1	2		
DIAMETER			3.00	FT	3.00	FT	
LENGTH			213.0	FT	328.0	FT	
TOTAL CROSS-SECTIONAL AREA			14.14	SF	14.14	SF	
MANNING'S ROUGHNESS			0.01	2	0.0	12	
UPSTREAM INVERT			111.36	FT	111.80	FT	
DOWNSTREAM INVERT			111.25	FT	110.80	FT	
CRITICAL ELEVATION (ROADWAY SHOULDER	REL)		119.00	FT	119.00	FT	
TAILWATER (CROWN OF PIPE)			114.25	FT	113.80	FT	
DETERMINE FLOWRATES (Q):			Mas acc				
* VELOCITY (25 YR)	6.00	FT/S	Headw Elevat		Heady Eleva		
Q (25 YR) = V (25 YR) * TOTAL AREA	85	CFS	115.82	FT	115.77	FT	
Q (50 YR) = 1.25 * Q (25 YR)	106	CFS	116.70	FT	116.86	FT	
Q (100 YR) = 1.40 * Q (25 YR)	119	CFS	117.34	FT	117.66	FT	

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-1 EXISTING HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 85 cfs
Design Flow: 106 cfs
Maximum Flow: 119 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-1E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
115.82	85.00	85.00	0.00	1
115.95	88.40	88.40	0.00	1
116.09	91.80	91.80	0.00	1
116.23	95.20	95.20	0.00	- 1
116.37	98.60	98.60	0.00	1
116.52	102.00	102.00	0.00	1
116.67	105.40	105.40	0.00	1
116.70	106.00	106.00	0.00	1
116.99	112.20	112.20	0.00	1
117.16	115.60	115.60	0.00	1
117.34	119.00	119.00	0.00	1
119.00	147.62	147.62	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
85.00	85.00	115.82	3.464	4.465	4-FFf	3.000	2.121	3.000	3.000	6.013	0.000
88.40	88.40	115.95	3,579	4.593	4-FFf	3.000	2.163	3.000	3.000	6.253	0.000
91.80	91.80	116.09	3,698	4.727	4-FFf	3.000	2.204	3.000	3.000	6.494	0.000
95.20	95.20	116.23	3.820	4.865	4-FFf	3.000	2.244	3.000	3.000	6.734	0.000
98.60	98.60	116.37	3.947	5.009	4-FFf	3.000	2.283	3.000	3.000	6.975	0.000
102.00	102.00	116.52	4.078	5.158	4-FFf	3.000	2,320	3.000	3.000	7.215	0.000
105.40	105.40	116.67	4.214	5.311	4-FFf	3.000	2.357	3.000	3.000	7.456	0.000
106.00	106.00	116.70	4.238	5.339	4-FFf	3.000	2.363	3,000	3.000	7.498	0.000
112.20	112,20	116.99	4.500	5.634	4-FFf	3.000	2.426	3.000	3.000	7.937	0.000
115.60	115,60	117.16	4.650	5.803	4-FFf	3.000	2.459	3.000	3.000	8.177	0.000
119,00	119.00	117.34	4.805	5.977	4-FFf	3.000	2.491	3,000	3.000	8.418	0.000

Straight Culvert

Inlet Elevation (invert): 111.36 ft, Outlet Elevation (invert): 111.25 ft

Culvert Length: 213.00 ft, Culvert Slope: 0.0005

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 111.36 ft
Outlet Station: 213.00 ft
Outlet Elevation: 111.25 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: CD-1E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
85.00	114.25	3.00
88.40	114.25	3.00
91.80	114.25	3.00
95.20	114,25	3.00
98.60	114,25	3.00
102.00	114.25	3.00
105.40	114.25	3.00
106.00	114.25	3.00
112.20	114.25	3.00
115.60	114.25	3.00
119.00	114.25	3.00

Tailwater Channel Data - CD-1E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 114.25 ft

Roadway Data for Crossing: CD-1E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 119.00 ft Roadway Surface: Paved

Roadway Top Width: 154.00 ft

CD-1 PROPOSED HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 85 cfs
Design Flow: 106 cfs
Maximum Flow: 119 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-1P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
115.77	85.00	85.00	0.00	1
115.93	88.40	88.40	0.00	1
116.10	91.80	91.80	0.00	1
116.27	95.20	95.20	0.00	1
116.45	98.60	98.60	0.00	4
116.64	102.00	102.00	0.00	1
116.83	105.40	105.40	0.00	1
116.86	106.00	106.00	0.00	1
117,23	112.20	112.20	0.00	1
117.44	115.60	115.60	0.00	1
117.66	119.00	119.00	0.00	1
119.00	138.08	138.08	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
85.00	85.00	115.77	3.460	3.970	4-FFf	2.702	2.121	3.000	3.000	6.013	0.000
88.40	88.40	115.93	3.575	4.131	4-FFf	3.000	2.163	3.000	3.000	6.253	0.000
91,80	91.80	116.10	3.694	4.298	4-FFf	3.000	2.204	3.000	3.000	6.494	0.000
95,20	95.20	116.27	3.816	4.472	4-FFf	3.000	2.244	3.000	3.000	6.734	0.000
98.60	98,60	116,45	3.943	4.651	4-FFf	3.000	2.283	3.000	3.000	6.975	0.000
102.00	102.00	116.64	4.074	4.837	4-FFf	3.000	2.320	3.000	3.000	7.215	0.000
105.40	105.40	116.83	4.210	5.030	4-FFf	3.000	2.357	3.000	3.000	7.456	0.000
106.00	106.00	116.86	4.234	5.064	4-FFf	3.000	2.363	3.000	3.000	7.498	0.000
112.20	112.20	117.23	4.496	5.433	4-FFf	3.000	2,426	3.000	3.000	7.937	0.000
115.60	115.60	117.44	4.646	5.644	4-FFf	3.000	2.459	3.000	3.000	8.177	0.000
119.00	119.00	117.66	4.801	5.862	4-FFf	3.000	2.491	3.000	3.000	8.418	0.000

Inlet Elevation (invert): 111.80 ft, Outlet Elevation (invert): 110.80 ft

Culvert Length: 328.00 ft, Culvert Slope: 0.0030

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 111.80 ft
Outlet Station: 328.00 ft
Outlet Elevation: 110.80 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 3.00 ft Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-1P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
85.00	113.80	3.00
88.40	113.80	3.00
91.80	113.80	3.00
95.20	113.80	3.00
98.60	113.80	3.00
102.00	113.80	3.00
105.40	113.80	3.00
106.00	113.80	3.00
112.20	113.80	3.00
115.60	113.80	3.00
119.00	113.80	3.00

Tailwater Channel Data - CD-1P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 113.80 ft

Roadway Data for Crossing: CD-1P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 119.00 ft Roadway Surface: Paved

Roadway Top Width: 280.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.			D-2			
		Existi	ng	Propo	osed	
LOCATION	664+22	2.84	664+2	2.84		
WIDTH		4.00	FT	4.00	FT	
HEIGHT		4.00	FT	4.00	FT	
BARRELS		2		2		
DIAMETER		4.00	FT	4.00	FT	
LENGTH		256.0	FT	300.0	FT	
TOTAL CROSS-SECTIONAL AREA		25.13	SF	25.13	SF	
MANNING'S ROUGHNESS		0.012			0.012	
UPSTREAM INVERT		102.58	FT	102.58	FT	
DOWNSTREAM INVERT		102.48	FT	102.18	FT	
CRITICAL ELEVATION (ROADWAY SHOULDER	R EL)	113.00	FT	113.00	FT	
TAILWATER (CROWN OF PIPE)		106.48	FT	106.18	FT	
DETERMINE FLOWRATES (Q):		02747		LOSE A		
ASSUMED VELOCITY (25 YR)	6.00 FT/S	Headw Elevat		Heady Eleva		
Q (25 YR) = V (25 YR) * TOTAL AREA	151 CFS	107.92	FT	107.72	FT	
Q (50 YR) = 1.25 * Q (25 YR)	188 CFS	108.71	FT	108.57	FT	
Q (100 YR) = 1.40 * Q (25 YR)	211 CFS	109.29	FT	109.19	FT	

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-2 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 151 cfs
Design Flow: 188 cfs
Maximum Flow: 211 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-2E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
107.92	151.00	151.00	0.00	1
108.04	157.00	157.00	0.00	1
108.16	163.00	163.00	0.00	1
108,28	169.00	169.00	0.00	1
108.41	175.00	175.00	0.00	1
108.55	181.00	181.00	0.00	4
108.69	187.00	187.00	0.00	1
108.71	188.00	188.00	0.00	1
108.98	199.00	199.00	0.00	1
109.13	205.00	205.00	0.00	1
109.29	211.00	211.00	0.00	1
113.00	321.30	321,30	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
151.00	151.00	107.92	4.135	5.340	4-FFf	4.000	2.628	4.000	4.000	6.008	0.000
157.00	157.00	108.04	4.255	5.457	4-FFf	4.000	2.681	4.000	4.000	6.247	0.000
163.00	163.00	108.16	4.377	5.578	4-FFf	4.000	2.732	4.000	4.000	6.486	0.000
169.00	169.00	108.28	4.502	5.704	4-FFf	4.000	2.783	4.000	4.000	6.724	0.000
175.00	175.00	108.41	4.630	5.834	4-FFf	4.000	2.832	4.000	4.000	6.963	0.000
181.00	181.00	108.55	4.762	5.969	4-FFf	4.000	2.881	4.000	4.000	7,202	0.000
187.00	187.00	108.69	4.897	6.108	4-FFf	4.000	2.928	4.000	4.000	7.440	0.000
188.00	188.00	108.71	4.920	6.132	4-FFf	4.000	2.936	4.000	4.000	7,480	0.000
199.00	199.00	108,98	5.180	6.401	4-FFf	4.000	3.019	4.000	4.000	7.918	0.000
205.00	205.00	109.13	5.327	6.554	4-FFf	4.000	3.063	4.000	4.000	8.157	0.000
211.00	211.00	109.29	5.479	6.712	4-FFf	4.000	3.105	4.000	4,000	8,395	0.000

Inlet Elevation (invert): 102.58 ft, Outlet Elevation (invert): 102.48 ft.

Culvert Length: 256.00 ft, Culvert Slope: 0.0004

Strain and the state of the sta

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 102.58 ft
Outlet Station: 256.00 ft
Outlet Elevation: 102.48 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Circular

Barrel Diameter: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-2E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
151.00	106.48	4.00
157.00	106.48	4.00
163.00	106.48	4.00
169.00	106.48	4.00
175.00	106.48	4.00
181.00	106.48	4.00
187.00	106.48	4.00
188.00	106.48	4.00
199.00	106.48	4.00
205.00	106.48	4.00
211.00	106.48	4.00

Tailwater Channel Data - CD-2E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 106.48 ft

Roadway Data for Crossing: CD-2E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 113.00 ft Roadway Surface: Paved

Roadway Top Width: 175.00 ft

CD-2 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 151 cfs Design Flow: 188 cfs

Maximum Flow: 211 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-2P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
107.72	151.00	151.00	0.00	1
107.85	157.00	157.00	0.00	1
107.98	163.00	163.00	0.00	1
108.11	169.00	169.00	0.00	1
108.25	175.00	175.00	0.00	1
108.40	181.00	181.00	0.00	1
108.55	187.00	187.00	0.00	1
108.57	188.00	188.00	0.00	1
108.86	199.00	199.00	0.00	1
109.02	205.00	205.00	0.00	1
109.19	211.00	211.00	0.00	1
113.00	317.44	317.44	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
151.00	151.00	107,72	4.133	5.143	4-FFf	4.000	2.628	4.000	3.700	6.008	0.000
157.00	157.00	107.85	4.253	5.268	4-FFf	4,000	2.681	4.000	3,700	6,247	0.000
163.00	163.00	107.98	4,375	5.398	4-FFf	4.000	2.732	4.000	3.700	6.486	0.000
169.00	169.00	108.11	4.500	5.533	4-FFf	4.000	2.783	4.000	3.700	6.724	0.000
175.00	175.00	108.25	4.628	5.672	4-FFf	4.000	2.832	4.000	3.700	6.963	0.000
181.00	181.00	108.40	4.760	5.817	4-FFf	4.000	2.881	4.000	3,700	7.202	0.000
187.00	187.00	108.55	4.895	5.966	4-FFf	4.000	2.928	4.000	3.700	7.440	0.000
188.00	188.00	108.57	4,918	5.992	4-FFf	4.000	2.936	4.000	3.700	7.480	0.000
199.00	199.00	108.86	5.178	6.280	4-FFf	4.000	3.019	4.000	3.700	7.918	0.000
205.00	205.00	109.02	5.325	6.444	4-FFf	4.000	3.063	4,000	3.700	8.157	0.000
211.00	211.00	109.19	5.477	6.613	4-FFf	4.000	3.105	4.000	3.700	8.395	0.000

Inlet Elevation (invert): 102.58 ft, Outlet Elevation (invert): 102.18 ft

Culvert Length: 300.00 ft, Culvert Slope: 0.0013

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 102.58 ft
Outlet Station: 300.00 ft
Outlet Elevation: 102.18 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 4.00 ft Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-2P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
151.00	106.18	3.70
157.00	106.18	3.70
163.00	106.18	3.70
169.00	106.18	3.70
175.00	106.18	3.70
181.00	106.18	3.70
187.00	106.18	3.70
188.00	106.18	3.70
199.00	106.18	3.70
205.00	106.18	3.70
211.00	106.18	3.70

Tailwater Channel Data - CD-2P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 106.18 ft

Roadway Data for Crossing: CD-2P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 113.00 ft Roadway Surface: Paved

Roadway Top Width: 272.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.				CD-3	
			ing	Proposed	
LOCATION	STA.	680+0	0.00	680+0	00.00
WIDTH		9.00	FT	9.00	FT
HEIGHT		7.00	FT	7.00	FT
BARRELS		2		2	
DIAMETER			FT	9.00	FT
LENGTH		262.0	FT	353.0	FT
TOTAL CROSS-SECTIONAL AREA		126.00	SF	127.23	SF
MANNING'S ROUGHNESS		0.01	2	0.0	12
UPSTREAM INVERT		92.11	FT	92.11	FT
DOWNSTREAM INVERT		91.77	FT	91.77	FT
CRITICAL ELEVATION (ROADWAY SHOULDER	R EL)	105.50	FT	105.50	FT
TAILWATER (CROWN OF PIPE)		98.77	FT	98.77	FT
DETERMINE FLOWRATES (Q):		Headw	vator	Heady	water
ASSUMED VELOCITY (25 YR)	6.00 FT/S	1,7,6,67,57	1000	Eleva	
Q (25 YR) = V (25 YR) * TOTAL AREA	756 CFS	99.86	FT	99.94	FT
Q (50 YR) = 1.25 * Q (25 YR)	945 CFS	100.47	FT	100.60	FT
Q (100 YR) = 1.40 * Q (25 YR)	1058 CFS	100.90	FT	101.07	FT

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-3 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 756 cfs Design Flow: 945 cfs

Maximum Flow: 1058 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-3E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
99.86	756.00	756.00	0.00	1
99.94	786.20	786.20	0.00	1
100.04	816.40	816.40	0.00	1
100.13	846.60	846.60	0.00	1
100.23	876.80	876.80	0.00	1
100.33	907.00	907.00	0.00	1
100.44	937.20	937.20	0.00	1
100.47	945.00	945.00	0.00	1
100.66	997.60	997.60	0.00	1
100.78	1027.80	1027.80	0.00	1
100.90	1058.00	1058.00	0.00	1
105.50	1769.00	1769.00	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
756.00	756.00	99.86	6.424	7.746	4-FFf	5.217	3.798	7.000	7.000	6.000	0.000
786.20	786.20	99.94	6.597	7.835	4-FFf	5.375	3.898	7.000	7.000	6.240	0.000
816.40	816.40	100.04	6,771	7.927	4-FFf	5.534	3.998	7.000	7.000	6.479	0.000
846.60	846.60	100.13	6.944	8.022	4-FFf	5.692	4.096	7.000	7.000	6.719	0.000
876.80	876.80	100,23	7.118	8.121	4-FFf	5.848	4.192	7.000	7.000	6.959	0.000
907.00	907.00	100.33	7.292	8.224	4-FFf	6.003	4.288	7.000	7.000	7.198	0.000
937.20	937.20	100.44	7.468	8.330	4-FFf	6.159	4.383	7.000	7.000	7,438	0.000
945.00	945.00	100.47	7.513	8.357	4-FFf	6.199	4.407	7.000	7.000	7,500	0.000
997.60	997.60	100.66	7.821	8.552	4-FFf	7.000	4.569	7.000	7.000	7.917	0.000
1027.80	1027.80	100.78	8.001	8.668	4-FFf	7.000	4.661	7.000	7.000	8.157	0.000
1058.00	1058.00	100.90	8.182	8.788	4-FFf	7.000	4.752	7.000	7.000	8.397	0.000

Inlet Elevation (invert): 92.11 ft, Outlet Elevation (invert): 91.77 ft

Culvert Length: 262.00 ft, Culvert Slope: 0.0013

·····

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 92.11 ft
Outlet Station: 262.00 ft

Outlet Elevation: 91.77 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Concrete Box

Barrel Span: 9.00 ft Barrel Rise: 7.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-3E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
756.00	98.77	7.00
786.20	98.77	7.00
816.40	98.77	7.00
846.60	98.77	7.00
876.80	98.77	7.00
907.00	98.77	7.00
937.20	98.77	7.00
945.00	98.77	7.00
997.60	98.77	7.00
1027.80	98.77	7.00
1058.00	98.77	7.00

Tailwater Channel Data - CD-3E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 98.77 ft

Roadway Data for Crossing: CD-3E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 105.50 ft Roadway Surface: Paved

Roadway Top Width: 170.00 ft

CD-3 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 756 cfs Design Flow: 945 cfs

Maximum Flow: 1058 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-3P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
99.94	756.00	756.00	0.00	1
100.04	786.20	786.20	0.00	1
100.14	816.40	816.40	0.00	1
100.24	846.60	846.60	0.00	7.
100.35	876.80	876.80	0.00	1
100.46	907.00	907.00	0.00	1
100.57	937.20	937.20	0.00	1
100.60	945.00	945.00	0.00	1
100,81	997.60	997.60	0.00	1
100.94	1027.80	1027.80	0.00	1
101.07	1058.00	1058.00	0.00	1
105.50	1768.86	1768.86	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
756.00	756.00	99.94	6.425	7,832	4-FFf	5.852	3.798	7.000	7.000	6.000	0.000
786.20	786.20	100.04	6.598	7.928	4-FFf	6.032	3.898	7.000	7.000	6.240	0.000
816.40	816.40	100.14	6.772	8.027	4-FFf	6.212	3.998	7.000	7.000	6.479	0.000
846.60	846.60	100.24	6.945	8.130	4-FFf	7.000	4.096	7.000	7.000	6.719	0.000
876.80	876.80	100,35	7.119	8.237	4-FFf	7.000	4.192	7.000	7.000	6.959	0.000
907.00	907.00	100.46	7.294	8.348	4-FFf	7.000	4.288	7.000	7.000	7.198	0.000
937.20	937.20	100.57	7.469	8.462	4-FFf	7.000	4.383	7.000	7.000	7.438	0.000
945.00	945.00	100.60	7.514	8.492	4-FFf	7.000	4.407	7.000	7.000	7.500	0.000
997.60	997.60	100.81	7.823	8.702	4-FFf	7.000	4.569	7.000	7.000	7.917	0.000
1027.80	1027.80	100.94	8.002	8.827	4-FFf	7.000	4.661	7.000	7,000	8.157	0.000
1058.00	1058.00	101.07	8.183	8.956	4-FFf	7.000	4.752	7.000	7,000	8.397	0.000

Inlet Elevation (invert): 92.11 ft, Outlet Elevation (invert): 91.77 ft

Culvert Length: 353.00 ft, Culvert Slope: 0.0010

...........

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 92.11 ft
Outlet Station: 353.00 ft
Outlet Elevation: 91.77 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Concrete Box

Barrel Span: 9.00 ft Barrel Rise: 7.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-3P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
756.00	98.77	7.00
786.20	98.77	7.00
816.40	98.77	7.00
846.60	98.77	7.00
876.80	98.77	7.00
907.00	98.77	7.00
937.20	98.77	7.00
945.00	98.77	7.00
997.60	98.77	7.00
1027.80	98.77	7.00
1058.00	98.77	7.00

Tailwater Channel Data - CD-3P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 98.77 ft

Roadway Data for Crossing: CD-3P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 105.50 ft Roadway Surface: Paved

Roadway Top Width: 272.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.			C	D-4	
		Existi	ing	Propo	osed
LOCATION	STA.	692+20	0.31	692+2	20.31
WIDTH		3.00	FT	3.00	FT
HEIGHT		3.00	FT	3.00	FT
BARRELS		1		1	
DIAMETER		3.00	FT	3.00	FT
LENGTH		261.0	FT	300.0	FT
TOTAL CROSS-SECTIONAL AREA		7.07	SF	7.07	SF
MANNING'S ROUGHNESS		0.01	2	0.0	12
UPSTREAM INVERT		90.34	FT	90.34	FT
DOWNSTREAM INVERT		88.25	FT	88.25	FT
CRITICAL ELEVATION (ROADWAY SHOULDER	R EL)	98.00	FT	98.00	FT
TAILWATER (CROWN OF PIPE)		91.25	FT	91.25	FT
DETERMINE FLOWRATES (Q):		Marak.	200	1650	and in
ASSUMED VELOCITY (25 YR)	6.00 FT/S	Headw Eleva		Head	
Q (25 YR) = V (25 YR) * TOTAL AREA	42 CFS	93.76	FT	93.76	FT
Q (50 YR) = 1.25 * Q (25 YR)	53 CFS	94.57	FT	94.57	FT
Q (100 YR) = 1.40 * Q (25 YR)	59 CFS	95.09	FT	95.09	FT

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-4 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 42 cfs Design Flow: 53 cfs Maximum Flow: 59 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-4E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
93.76	42.00	42.00	0.00	1
93.87	43.70	43.70	0.00	1
93.99	45.40	45.40	0.00	1
94.11	47.10	47.10	0.00	1
94.24	48.80	48.80	0.00	1
94.37	50.50	50.50	0.00	1
94.50	52.20	52.20	0.00	1
94.57	53.00	53.00	0.00	1
94.79	55.60	55.60	0.00	1
94.93	57.30	57.30	0.00	1
95.09	59.00	59.00	0.00	1
98.00	83.71	83.71	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
42.00	42.00	93.76	3.420	2.609	5-JS1f	1.760	2.109	3.000	3.000	6.223	0.000
43.70	43.70	93.87	3.534	2.749	5-JS1f	1.806	2.151	3.000	3,000	6.475	0.000
45.40	45.40	93.99	3.651	2.895	5-JS1f	1.851	2.192	3.000	3.000	6.727	0.000
47.10	47.10	94.11	3.772	3.047	5-JS1f	1.897	2.233	3.000	3.000	6.979	0.000
48.80	48.80	94.24	3.898	3.204	5-JS1f	1.946	2.272	3.000	3.000	7.231	0.000
50.50	50.50	94.37	4.028	3.367	5-JS1f	1.995	2.309	3.000	3.000	7.483	0.000
52.20	52.20	94.50	4.162	3.535	5-JS1f	2.044	2.346	3.000	3.000	7.735	0.000
53.00	53.00	94.57	4.227	3.616	5-JS1f	2.068	2.363	3.000	3.000	7.853	0.000
55.60	55.60	94.79	4.445	3.888	5-JS1f	2.143	2.416	3.000	3.000	8.239	0.000
57.30	57.30	94.93	4.594	4.073	5-JS1f	2.194	2.449	3.000	3.000	8.490	0.000
59.00	59.00	95.09	4.748	4.263	5-JS1f	2.254	2.481	3.000	3.000	8.742	0.000

Inlet Elevation (invert): 90.34 ft, Outlet Elevation (invert): 88.25 ft

Culvert Length: 261.01 ft, Culvert Slope: 0.0080

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 90.34 ft
Outlet Station: 261.00 ft

Outlet Elevation: 88.25 ft

Number of Barrels: 1

Culvert Data Summary - EXIST

Barrel Shape: Circular

Barrel Diameter: 3.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-4E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
42.00	91,25	3.00
43.70	91.25	3.00
45.40	91.25	3.00
47.10	91.25	3.00
48.80	91.25	3.00
50.50	91.25	3.00
52.20	91.25	3.00
53.00	91.25	3.00
55.60	91.25	3.00
57.30	91.25	3.00
59.00	91.25	3.00

Tailwater Channel Data - CD-4E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 91.25 ft

Roadway Data for Crossing: CD-4E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 98.00 ft Roadway Surface: Paved

Roadway Top Width: 167.00 ft

CD-4 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 42 cfs Design Flow: 53 cfs

Maximum Flow: 59 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-4P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
93.76	42.00	42.00	0.00	1
93.88	43.70	43.70	0.00	1
93.99	45.40	45.40	0.00	1
94.11	47.10	47.10	0.00	1
94.24	48.80	48.80	0.00	1
94.37	50.50	50.50	0.00	1
94.50	52.20	52.20	0.00	1
94.57	53.00	53.00	0.00	11
94.79	55.60	55,60	0.00	1
94.94	57.30	57.30	0.00	1
95.09	59.00	59.00	0.00	1
98.00	80.66	80.66	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
42.00	42.00	93.76	3.421	2.740	5-JS1f	1.841	2.109	3.000	3.000	6.223	0.000
43.70	43.70	93.88	3.535	2.891	5-JS1f	1.891	2.151	3.000	3.000	6.475	0.000
45.40	45.40	93.99	3.653	3.049	5-JS1f	1.942	2.192	3.000	3.000	6.727	0.000
47.10	47.10	94.11	3.774	3.212	5-JS1f	1.995	2.233	3.000	3.000	6.979	0.000
48.80	48.80	94.24	3.900	3.381	5-JS1f	2.048	2.272	3.000	3.000	7.231	0.000
50.50	50.50	94.37	4.029	3.556	5-JS1f	2.101	2.309	3.000	3.000	7.483	0.000
52.20	52.20	94.50	4.164	3.737	5-JS1f	2.153	2.346	3.000	3.000	7.735	0.000
53.00	53.00	94.57	4.229	3.824	5-JS1f	2.178	2.363	3.000	3.000	7.853	0.000
55.60	55.60	94.79	4.447	4.117	5-JS1f	2.276	2.416	3.000	3.000	8.239	0.000
57.30	57.30	94.94	4.595	4.317	5-JS1f	2.340	2.449	3.000	3.000	8.490	0.000
59.00	59.00	95.09	4.749	4.522	5-S2n	2.404	2.481	2.404	3.000	9.729	0.000

Inlet Elevation (invert): 90.34 ft, Outlet Elevation (invert): 88.25 ft

Culvert Length: 300.01 ft, Culvert Slope: 0.0070

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 90.34 ft
Outlet Station: 300.00 ft
Outlet Elevation: 88.25 ft

Number of Barrels: 1

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 3.00 ft Barrel Material: Concrete

Embedment: 0.00 in Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-4P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	
42.00	91.25	3.00	
43.70	91.25	3.00	
45.40	91.25	3.00	
47.10	91.25	3.00	
48.80	91.25	3.00	
50.50	91.25	3.00	
52.20	91.25	3.00	
53.00	91.25	3.00	
55.60	91.25	3.00	
57.30	91.25	3.00	
59.00	91.25	3.00	

Tailwater Channel Data - CD-4P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 91.25 ft

Roadway Data for Crossing: CD-4P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 98.00 ft Roadway Surface: Paved

Roadway Top Width: 275.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.					D-5		
			Existi	ng	Propo	sed	
LOCATION		STA.	698+00	0.00	698+00.00		
WIDTH			12.00	FT	12.00	FT	
HEIGHT			8.00	FT	8.00	FT	
BARRELS			4		4		
DIAMETER				FT	12.00	FT	
LENGTH			260.0	FT	392.0	FT	
TOTAL CROSS-SECTIONAL AREA			384.00	SF	384.00	SF	
MANNING'S ROUGHNESS			0.01	2	0.0	12	
UPSTREAM INVERT			84.27	FT	84.27	FT	
DOWNSTREAM INVERT			83.56	FT	83.16	FT	
CRITICAL ELEVATION (ROADWAY SHOULDER	R EL)		96.00	FT	96.00	FT	
TAILWATER (CROWN OF PIPE)			91.56	FT	91.16	FT	
DETERMINE FLOWRATES (Q):					44000		
ASSUMED VELOCITY (25 YR)	6.00	FT/S	Headw Elevat	2.123	Heady Eleva	12.00	
Q (25 YR) = V (25 YR) * TOTAL AREA	2304	CFS	92.59	FT	92.31	FT	
Q (50 YR) = 1.25 * Q (25 YR)	2880	CFS	93.16	FT	92.95	FT	
Q (100 YR) = 1.40 * Q (25 YR)	3226	CFS	93.57	FT	93.40	FT	

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-5 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 2304 cfs Design Flow: 2880 cfs Maximum Flow: 3226 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-5E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
92.59	2304.00	2304.00	0.00	1
92.67	2396.20	2396.20	0.00	1
92.76	2488.40	2488.40	0.00	1
92.85	2580.60	2580.60	0.00	1
92.94	2672.80	2672.80	0.00	1
93.04	2765.00	2765.00	0.00	- 1
93.14	2857.20	2857.20	0.00	1
93.16	2880.00	2880.00	0.00	1
93.35	3041.60	3041.60	0.00	1
93.46	3133.80	3133.80	0.00	1
93.57	3226.00	3226.00	0.00	1
96.00	4492.48	4492.48	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2304.00	2304.00	92.59	7.013	8.319	1-S1f	4.088	4.152	8.000	8.000	6.000	0.000
2396,20	2396,20	92.67	7,200	8.403	1-S1f	4,206	4.262	8.000	8.000	6.240	0.000
2488.40	2488.40	92.76	7.387	8.490	1-S1f	4.324	4.370	8.000	8.000	6.480	0.000
2580,60	2580.60	92.85	7,573	8.580	1-S1f	4.439	4.477	8.000	8.000	6.720	0.000
2672.80	2672.80	92.94	7.758	8.673	1-S1f	4.552	4.584	8,000	8.000	6.960	0.000
2765.00	2765,00	93,04	7.944	8.770	1-S1f	4.665	4.688	8.000	8.000	7.201	0.000
2857.20	2857.20	93.14	8.130	8.870	1-S1f	4.777	4.792	8.000	8.000	7.441	0.000
2880.00	2880.00	93.16	8.176	8.895	1-S1f	4.805	4.817	8.000	8.000	7,500	0.000
3041.60	3041.60	93.35	8.504	9.081	4-FFf	5.003	4.996	8.000	8.000	7.921	0.000
3133.80	3133.80	93.46	8.693	9.191	4-FFf	5.115	5.096	8.000	8.000	8.161	0.000
3226.00	3226.00	93.57	8.883	9.304	4-FFf	5.224	5.196	8.000	8.000	8.401	0.000

Inlet Elevation (invert): 84.27 ft, Outlet Elevation (invert): 83.56 ft

Culvert Length: 260.00 ft, Culvert Slope: 0.0027

......

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 84.27 ft
Outlet Station: 260.00 ft

Outlet Elevation: 83.56 ft

Number of Barrels: 4

Culvert Data Summary - EXIST

Barrel Shape: Concrete Box

Barrel Span: 12.00 ft Barrel Rise: 8.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-5E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
2304.00	91.56	8.00
2396.20	91.56	8.00
2488.40	91.56	8.00
2580.60	91.56	8.00
2672.80	91.56	8.00
2765.00	91.56	8.00
2857.20	91.56	8.00
2880.00	91.56	8.00
3041.60	91.56	8.00
3133.80	91.56	8.00
3226.00	91.56	8.00

Tailwater Channel Data - CD-5E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 91.56 ft

Roadway Data for Crossing: CD-5E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 96.00 ft Roadway Surface: Paved

Roadway Top Width: 170.00 ft

CD-5 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 2304 cfs Design Flow: 2880 cfs Maximum Flow: 3226 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-5P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
92.31	2304.00	2304.00	0.00	1
92.40	2396.20	2396.20	0.00	1
92.50	2488.40	2488.40	0.00	1
92.60	2580.60	2580.60	0.00	1
92.71	2672.80	2672.80	0.00	1 -
92.81	2765.00	2765.00	0.00	1
92.93	2857.20	2857.20	0.00	1
92.95	2880.00	2880.00	0.00	1 -
93.16	3041.60	3041.60	0.00	1
93.28	3133.80	3133.80	0.00	1
93.40	3226.00	3226.00	0.00	1
96.00	4492.69	4492.69	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2304.00	2304.00	92.31	7.012	8.041	1-S1f	4.035	4.152	8.000	8.000	6.000	0.000
2396.20	2396.20	92.40	7.200	8.135	1-S1f	4.151	4,262	8.000	8.000	6.240	0.000
2488.40	2488.40	92.50	7.386	8,232	1-S1f	4.267	4.370	8.000	8.000	6.480	0.000
2580.60	2580.60	92.60	7.572	8.332	1-S1f	4.382	4.477	8.000	8.000	6.720	0.000
2672.80	2672.80	92.71	7.758	8.436	1-S1f	4.493	4.584	8.000	8.000	6.960	0.000
2765.00	2765.00	92.81	7.944	8.544	1-S1f	4.604	4.688	8.000	8.000	7.201	0.000
2857.20	2857.20	92.93	8.130	8.655	1-S1f	4.715	4.792	8.000	8.000	7.441	0.000
2880.00	2880.00	92.95	8.176	8,683	1-S1f	4.742	4.817	8.000	8.000	7.500	0.000
3041.60	3041.60	93.16	8.504	8.888	1-S1f	4.936	4.996	8.000	8.000	7.921	0.000
3133.80	3133.80	93.28	8.693	9.010	1-S1f	5.047	5.096	8.000	8,000	8.161	0.000
3226.00	3226.00	93.40	8.882	9.134	1-S1f	5.156	5.196	8.000	8.000	8.401	0.000

Inlet Elevation (invert): 84.27 ft, Outlet Elevation (invert): 83.16 ft

Culvert Length: 392.00 ft, Culvert Slope: 0.0028

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 84.27 ft
Outlet Station: 392.00 ft

Outlet Elevation: 83.16 ft

Number of Barrels: 4

Culvert Data Summary - PROP

Barrel Shape: Concrete Box

Barrel Span: 12.00 ft Barrel Rise: 8.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-5P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
2304.00	91.16	8.00
2396.20	91.16	8.00
2488.40	91.16	8.00
2580.60	91.16	8.00
2672.80	91.16	8.00
2765.00	91.16	8.00
2857.20	91.16	8.00
2880.00	91.16	8.00
3041.60	91.16	8.00
3133.80	91.16	8.00
3226.00	91.16	8.00

Tailwater Channel Data - CD-5P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 91.16 ft

Roadway Data for Crossing: CD-5P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 96.00 ft Roadway Surface: Paved

Roadway Top Width: 288.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.			C	D-6	
		Existi	ng	Propo	osed
LOCATION	STA.	732+50	0.00	732+8	50.00
WIDTH		7.00	FT	7.00	FT
HEIGHT		4.00	FT	4.00	FT
BARRELS		2		2	
DIAMETER			FT	7.00	FT
LENGTH		310.0	FT	460.0	FT
TOTAL CROSS-SECTIONAL AREA		56.00	SF	56.00	SF
MANNING'S ROUGHNESS	0.01	2	0.012		
UPSTREAM INVERT		90.72	FT	90.72	FT
DOWNSTREAM INVERT	V. 10.	90.50	FT	90.10	FT
CRITICAL ELEVATION (ROADWAY SHOULDE	R EL)	97.50	FT	97.50	FT
TAILWATER (CROWN OF PIPE)		94.50	FT	94.10	FT
DETERMINE FLOWRATES (Q):		Headw	vator	Head	untar
ASSUMED VELOCITY (25 YR)	6.00 FT/S	Eleva		Eleva	
Q (25 YR) = V (25 YR) * TOTAL AREA	336 CFS	95.86	FT	95.72	FT
Q (50 YR) = 1.25 * Q (25 YR)	420 CFS	96.63	FT	96.63	FT
Q (100 YR) = 1.40 * Q (25 YR)	470 CFS	97.17	FT	97.26	FT

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-6 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 336 cfs Design Flow: 420 cfs Maximum Flow: 470 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-6E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
95.86	336.00	336.00	0.00	1
95,97	349.40	349.40	0.00	1
96.09	362.80	362.80	0.00	1
96,21	376.20	376.20	0.00	4
96.33	389.60	389.60	0.00	1
96.46	403.00	403.00	0.00	1
96.59	416.40	416.40	0.00	1
96.63	420.00	420.00	0.00	1
96.87	443.20	443.20	0.00	1
97.02	456.60	456.60	0.00	1
97.17	470.00	470.00	0.00	4
97.50	498.45	498.45	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
336.00	336.00	95.86	4.479	5.143	4-FFf	4.000	2.615	4.000	4.000	6.000	0.000
349.40	349.40	95.97	4.614	5.254	4-FFf	4,000	2.684	4.000	4.000	6.239	0.000
362.80	362.80	96.09	4.752	5.369	4-FFf	4.000	2.753	4.000	4.000	6.479	0.000
376.20	376.20	96.21	4.892	5.489	4-FFf	4.000	2.820	4.000	4.000	6.718	0.000
389.60	389.60	96.33	5.034	5.613	4-FFf	4.000	2.887	4.000	4.000	6.957	0.000
403.00	403.00	96.46	5.178	5.741	4-FFf	4.000	2.952	4.000	4.000	7.196	0.000
416.40	416.40	96.59	5.326	5.874	4-FFf	4.000	3.017	4.000	4.000	7.436	0.000
420.00	420.00	96.63	5,366	5.910	4-FFf	4.000	3.035	4.000	4.000	7.500	0.000
443.20	443.20	96.87	5.631	6.152	4-FFf	4.000	3.146	4.000	4.000	7.914	0.000
456.60	456.60	97.02	5.789	6.297	4-FFf	4.000	3.209	4.000	4.000	8.154	0.000
470.00	470.00	97.17	5.950	6.447	4-FFf	4.000	3.271	4.000	4.000	8.393	0.000

Inlet Elevation (invert): 90.72 ft, Outlet Elevation (invert): 90.50 ft

Culvert Length: 310.00 ft, Culvert Slope: 0.0007

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 90.72 ft
Outlet Station: 310.00 ft
Outlet Elevation: 90.50 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-6E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
336.00	94.50	4.00
349.40	94.50	4.00
362.80	94.50	4.00
376.20	94.50	4.00
389.60	94.50	4.00
403.00	94.50	4.00
416.40	94.50	4.00
420.00	94.50	4.00
443.20	94.50	4.00
456.60	94.50	4.00
470.00	94.50	4.00

Tailwater Channel Data - CD-6E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 94.50 ft

Roadway Data for Crossing: CD-6E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 97.50 ft Roadway Surface: Paved

Roadway Top Width: 170.00 ft

CD-6 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 336 cfs Design Flow: 420 cfs Maximum Flow: 470 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-6P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
95.72	336.00	336.00	0.00	1
95.85	349.40	349.40	0.00	1
95.99	362.80	362.80	0.00	1
96.13	376.20	376.20	0.00	1
96.27	389.60	389.60	0.00	1
96.43	403.00	403.00	0.00	- 1
96.58	416.40	416.40	0.00	1
96.63	420.00	420.00	0.00	1
96.91	443.20	443.20	0.00	1
97.09	456.60	456.60	0.00	1
97.26	470.00	470.00	0.00	1
97.50	487.20	487.20	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
336.00	336.00	95.72	4.478	4.997	4-FFf	3.595	2.615	4.000	4.000	6.000	0.000
349.40	349.40	95.85	4.613	5.129	4-FFf	4.000	2.684	4.000	4.000	6.239	0.000
362.80	362.80	95.99	4.751	5.265	4-FFf	4.000	2.753	4.000	4.000	6.479	0.000
376.20	376.20	96.13	4.890	5.407	4-FFf	4.000	2.820	4.000	4.000	6.718	0.000
389.60	389.60	96.27	5.032	5.554	4-FFf	4.000	2.887	4.000	4.000	6.957	0.000
403.00	403.00	96.43	5.177	5.706	4-FFf	4.000	2.952	4.000	4.000	7.196	0.000
416.40	416.40	96.58	5.325	5.864	4-FFf	4.000	3.017	4.000	4.000	7.436	0.000
420.00	420.00	96.63	5.365	5.907	4-FFf	4.000	3.035	4.000	4.000	7.500	0.000
443,20	443.20	96.91	5.630	6.194	4-FFf	4.000	3.146	4.000	4.000	7.914	0.000
456.60	456.60	97.09	5.788	6.366	4-FFf	4.000	3.209	4.000	4.000	8.154	0.000
470.00	470.00	97.26	5,949	6.544	4-FFf	4.000	3.271	4.000	4.000	8.393	0.000

Inlet Elevation (invert): 90.72 ft, Outlet Elevation (invert): 90.10 ft

Culvert Length: 460.00 ft, Culvert Slope: 0.0013

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 90.72 ft
Outlet Station: 460.00 ft
Outlet Elevation: 90.10 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-6P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
336.00	94.10	4.00
349.40	94.10	4.00
362.80	94.10	4.00
376.20	94.10	4.00
389.60	94.10	4.00
403.00	94.10	4.00
416.40	94.10	4.00
420.00	94.10	4.00
443.20	94.10	4.00
456.60	94.10	4.00
470.00	94.10	4.00

Tailwater Channel Data - CD-6P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 94.10 ft

Roadway Data for Crossing: CD-6P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 97.50 ft Roadway Surface: Paved

Roadway Top Width: 277.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.			1000	C	D-7	
			Existi	ng	Propo	osed
LOCATION		STA.	761+00	0.00	761+0	00.00
WIDTH			3.50	FT	4.00	FT
HEIGHT			3.50	FT	4.00	FT
BARRELS			1		1	
DIAMETER			3.50	FT	4.00	FT
LENGTH			227.0	FT	404.0	FT
TOTAL CROSS-SECTIONAL AREA			9.62	SF	12.57	SF
MANNING'S ROUGHNESS	G'S ROUGHNESS		0.01	2	0.012	
UPSTREAM INVERT			84.42	FT	84.42	FT
DOWNSTREAM INVERT			82.97	FT	82.97	FT
CRITICAL ELEVATION (ROADWAY SHOULDE	R EL)		90.50	FT	90.50	FT
TAILWATER (CROWN OF PIPE)			86.47	FT	86.97	FT
DETERMINE FLOWRATES (Q):			2000			
ASSUMED VELOCITY (25 YR)	6.00	FT/S	Headw Elevat		Heady Eleva	
Q (25 YR) = V (25 YR) * TOTAL AREA	58	CFS	88.22	FT	88.13	FT
Q (50 YR) = 1.25 * Q (25 YR)	72	CFS	88.99	FT	89.00	FT
Q (100 YR) = 1.40 * Q (25 YR)	81	CFS	89.56	FT	89.03	FT

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-7 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 58 cfs

Design Flow: 72 cfs

Maximum Flow: 81 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-7E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
88.22	58.00	58.00	0.00	1
88.34	60.30	60.30	0.00	1
88.46	62.60	62.60	0.00	1
88.58	64.90	64.90	0.00	1
88.71	67.20	67.20	0.00	1
88.84	69.50	69.50	0.00	-1
88.97	71.80	71.80	0.00	1
88.99	72.00	72.00	0.00	1
89.26	76.40	76.40	0.00	1
89.41	78.70	78.70	0.00	1
89.56	81.00	81.00	0.00	1
90.50	93.79	93.79	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
58.00	58.00	88.22	3.801	3.536	5-JS1f	2.086	2.383	3.500	3.500	6.314	0.000
60.30	60.30	88.34	3.918	3.656	5-JS1f	2.140	2.431	3.500	3.500	6.564	0.000
62.60	62.60	88.46	4.038	3.781	5-JS1f	2.194	2.477	3.500	3.500	6.815	0.000
64.90	64.90	88.58	4.161	3.910	5-JS1f	2.249	2.522	3.500	3.500	7.065	0.000
67.20	67.20	88.71	4.288	4.044	5-JS1f	2.307	2.566	3.500	3.500	7.316	0.000
69.50	69.50	88.84	4.419	4.183	5-JS1f	2.364	2.609	3.500	3.500	7.566	0.000
71.80	71.80	88.97	4.554	4.327	5-JS1f	2.422	2,651	3.500	3.500	7.816	0.000
72.00	72.00	88.99	4.566	4.339	5-JS1f	2.427	2,655	3.500	3.500	7.838	0.000
76.40	76.40	89.26	4.837	4.628	5-JS1f	2.538	2.731	3.500	3.500	8.317	0.000
78.70	78.70	89.41	4.985	4,785	5-JS1f	2.606	2.770	3.500	3.500	8.568	0.000
81.00	81.00	89.56	5.138	4.948	5-JS1f	2.676	2.807	3.500	3.500	8.818	0.000

Inlet Elevation (invert): 84.42 ft, Outlet Elevation (invert): 82.97 ft

Culvert Length: 227.00 ft, Culvert Slope: 0.0064

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 84.42 ft
Outlet Station: 227.00 ft
Outlet Elevation: 82.97 ft

Number of Barrels: 1

Culvert Data Summary - EXIST

Barrel Shape: Circular

Barrel Diameter: 3.50 ft Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-7E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
58.00	86.47	3.50
60.30	86.47	3.50
62.60	86.47	3.50
64.90	86.47	3.50
67.20	86.47	3.50
69.50	86.47	3.50
71.80	86.47	3.50
72.00	86.47	3.50
76.40	86.47	3.50
78.70	86.47	3.50
81.00	86.47	3.50

Tailwater Channel Data - CD-7E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 86.47 ft

Roadway Data for Crossing: CD-7E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 90.50 ft Roadway Surface: Paved

Roadway Top Width: 170.00 ft

CD-7 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 58 cfs

Design Flow: 72 cfs

Maximum Flow: 81 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-7P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
88.13	58.00	58.00	0.00	1
88.42	60.30	60.30	0.00	1
88.52	62.60	62.60	0.00	-1
88.63	64.90	64.90	0.00	1
88.74	67.20	67.20	0.00	1
88.86	69.50	69.50	0.00	-1
88.98	71.80	71.80	0.00	1
89.00	72.00	72.00	0.00	1
89.25	76.40	76.40	0.00	1
88.91	78.70	78.70	0.00	1
89.03	81.00	81.00	0.00	1
90.50	106.12	106.12	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
58.00	58.00	88.13	3,460	3.714	1-S1f	2.282	2,288	4.000	4,000	4.834	0.000
60.30	60.30	88.42	3.546	3,995	3-M1f	2.340	2.334	4.000	4.000	4.799	0.000
62,60	62,60	88.52	3.633	4.099	3-M1f	2.397	2.383	4.000	4.000	4.982	0.000
64.90	64.90	88.63	3.720	4.207	3-M1f	2,455	2.428	4.000	4.000	5.165	0.000
67.20	67.20	88.74	3.807	4.320	3-M1f	2.512	2.472	4.000	4.000	5.348	0.000
69.50	69.50	88.86	3.895	4.438	3-M1f	2.571	2,515	4.000	4.000	5.531	0.000
71.80	71.80	88.98	3.984	4.564	3-M1f	2,633	2.557	4.000	4.000	5.714	0.000
72.00	72.00	89.00	3.991	4.575	3-M1f	2.638	2.561	4.000	4.000	5.730	0.000
76.40	76.40	89,25	4.164	4.831	3-M1f	2.756	2.644	4.000	4.000	6.080	0.000
78,70	78.70	88.91	4.256	4,491	4-FFf	2,818	2.684	4.000	4.000	6.263	0.000
81.00	81.00	89.03	4.350	4.606	4-FFf	2.880	2.724	4.000	4.000	6.446	0.000

Inlet Elevation (invert): 84.42 ft. Outlet Elevation (invert): 82.97 ft

Culvert Length: 404.00 ft, Culvert Slope: 0.0036

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 84.42 ft
Outlet Station: 404.00 ft
Outlet Elevation: 82.97 ft

Number of Barrels: 1

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 4.00 ft Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-7P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
58.00	86.97	4.00
60.30	86.97	4.00
62.60	86.97	4.00
64.90	86.97	4.00
67.20	86.97	4.00
69.50	86.97	4.00
71.80	86.97	4.00
72.00	86.97	4.00
76.40	86.97	4.00
78.70	86.97	4.00
81.00	86.97	4.00

Tailwater Channel Data - CD-7P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 86.97 ft

Roadway Data for Crossing: CD-7P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 90.50 ft Roadway Surface: Paved

Roadway Top Width: 365.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

made by: SR 25-Jun-15

checked by: BJS 25-Jun-15 HNTB job #: 59219

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.			CD-8			
		Existi	ing		Propo	osed
LOCATION	STA.		785+16.00		785+16.00	
WIDTH		3.50	FT		4.00	FT
HEIGHT		3.50	FT		4.00	FT
BARRELS		2			2	
DIAMETER		3.50	FT		4.00	FT
LENGTH		248.0	FT		308.0	FT
TOTAL CROSS-SECTIONAL AREA		19.24	SF		25.13	SF
ANNING'S ROUGHNESS		0.01	0.012		0.012	
UPSTREAM INVERT		74.18	FT		74.18	FT
DOWNSTREAM INVERT		73.03	FT	L	73.03	FT
CRITICAL ELEVATION (ROADWAY SHOULDER EL)		81.00	FT	L	81.00	FT
TAILWATER (CROWN OF PIPE)		76.53	FT		77.03	FT
DETERMINE FLOWRATES (Q):						
		Headwater			Headwater	
ASSUMED VELOCITY (25 YR)	6.00 FT/S	Elevat	Elevation		Elevation	
Q (25 YR) = V (25 YR) * TOTAL AREA	115 CFS	78.11	FT		78.29	FT
Q (50 YR) = 1.25 * Q (25 YR)	144 CFS	78.91	FT	L	78.62	FT
Q (100 YR) = 1.40 * Q (25 YR)	162 CFS	79.54	FT		79.04	FT

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-8 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 115 cfs Design Flow: 144 cfs

Maximum Flow: 162 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-8E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
78.11	115.00	115.00	0.00	1
78.21	119.70	119.70	0.00	1
78.32	124.40	124.40	0.00	1
78.44	129.10	129.10	0.00	1
78.59	133.80	133.80	0.00	1
78.73	138.50	138.50	0.00	1
78.88	143.20	143.20	0.00	-1
78.91	144.00	144.00	0.00	1
79.20	152.60	152.60	0.00	1
79.37	157.30	157.30	0.00	1
79.54	162.00	162.00	0.00	1
81.00	197.30	197.30	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
115.00	115.00	78.11	3.779	3,925	1-S1f	2.314	2.373	3.500	3.500	6.260	0.000
119.70	119.70	78,21	3.898	4.032	1-S1f	2.383	2.421	3.500	3.500	6.515	0.000
124.40	124.40	78.32	4.020	4.142	1-S1f	2.452	2.469	3.500	3.500	6.771	0.000
129.10	129.10	78.44	4.145	4.263	4-FFf	2.521	2.515	3,500	3,500	6.709	0.000
133.80	133.80	78.59	4.274	4.405	4-FFf	2.600	2.561	3.500	3,500	6.953	0.000
138.50	138.50	78.73	4.407	4.552	4-FFf	2,685	2.605	3.500	3,500	7.198	0.000
143.20	143.20	78.88	4.545	4.704	4-FFf	2,769	2.648	3.500	3.500	7.442	0.000
144.00	144.00	78,91	4.569	4.731	4-FFf	2.783	2.655	3.500	3,500	7.484	0.000
152.60	152.60	79.20	4.834	5.023	4-FFf	2.986	2.730	3.500	3.500	7.930	0.000
157.30	157,30	79.37	4.985	5.191	4-FFf	3.127	2.769	3.500	3.500	8.175	0.000
162.00	162.00	79.54	5.141	5.363	4-FFf	3.500	2.807	3.500	3.500	8.419	0.000

Straight Culvert

Inlet Elevation (invert): 74.18 ft, Outlet Elevation (invert): 73.03 ft

Culvert Length: 248.00 ft, Culvert Slope: 0.0046

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 74.18 ft
Outlet Station: 248.00 ft
Outlet Elevation: 73.03 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Circular

Barrel Diameter: 3.50 ft Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-8E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
115.00	76.53	3.50
119.70	76.53	3.50
124.40	76.53	3.50
129.10	76.53	3.50
133.80	76.53	3.50
138.50	76.53	3.50
143.20	76.53	3.50
144.00	76.53	3.50
152.60	76.53	3.50
157.30	76.53	3.50
162.00	76.53	3.50

Tailwater Channel Data - CD-8E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 76.53 ft

Roadway Data for Crossing: CD-8E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 81.00 ft Roadway Surface: Paved

Roadway Top Width: 160.00 ft

CD-8 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 115 cfs Design Flow: 144 cfs

Maximum Flow: 162 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-8P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
77.98	115.00	115.00	0.00	1
78.06	119.70	119.70	0.00	1
78.13	124.40	124.40	0.00	1
78.21	129.10	129.10	0.00	1
78.61	133.80	133.80	0.00	1
78.73	138.50	138.50	0.00	1
78.84	143.20	143.20	0.00	1
78.86	144.00	144.00	0.00	1
78.62	152.60	152.60	0.00	1
78.72	157.30	157.30	0.00	1
78.83	162.00	162.00	0.00	1
81.00	240.75	240.75	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
115.00	115.00	77.98	3.440	3.804	1-S1f	2.242	2.278	4.000	4.000	4.793	0.000
119.70	119.70	78.06	3.529	3.877	1-S1f	2.299	2.325	4.000	4.000	4.988	0.000
124.40	124.40	78.13	3.618	3.952	1-S1f	2.357	2.375	4.000	4.000	5.184	0.000
129.10	129.10	78.21	3.706	4.028	1-S1f	2.414	2.421	4.000	4.000	5.380	0.000
133.80	133.80	78.61	3.795	4.432	3-M1f	2.472	2.466	4.000	4.000	5.324	0.000
138.50	138.50	78.73	3.885	4.545	3-M1f	2.530	2.510	4.000	4.000	5.511	0.000
143.20	143.20	78.84	3.975	4.664	3-M1f	2.590	2.554	4.000	4.000	5.698	0.000
144.00	144.00	78.86	3.991	4.684	3-M1f	2.601	2.561	4.000	4.000	5.730	0.000
152.60	152.60	78.62	4.160	4.445	4-FFf	2.714	2.642	4.000	4.000	6.072	0.000
157.30	157.30	78.72	4.254	4.545	4-FFf	2.775	2.683	4.000	4.000	6.259	0.000
162.00	162.00	78.83	4.350	4.648	4-FFf	2.837	2.724	4.000	4.000	6.446	0.000

Straight Culvert

Inlet Elevation (invert): 74.18 ft, Outlet Elevation (invert): 73.03 ft

Culvert Length: 308.00 ft, Culvert Slope: 0.0037

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 74.18 ft
Outlet Station: 308.00 ft
Outlet Elevation: 73.03 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 4.00 ft
Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-8P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
115.00	77.03	4.00
119.70	77.03	4.00
124.40	77.03	4.00
129.10	77.03	4.00
133.80	77.03	4.00
138.50	77.03	4.00
143.20	77.03	4.00
144.00	77.03	4.00
152.60	77.03	4.00
157.30	77.03	4.00
162.00	77.03	4.00

Tailwater Channel Data - CD-8P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 77.03 ft

Roadway Data for Crossing: CD-8P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 81.00 ft Roadway Surface: Paved

Roadway Top Width: 340.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	25-Jun-14
checked by:	BJS	25-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.					D-9	
			Existi	ng	Propo	osed
LOCATION		STA.	863+00	0.00	863+00.00	
WIDTH			7.00	FT	7.00	FT
HEIGHT			4.00	FT	4.00	FT
BARRELS			2		2	7
DIAMETER				FT	7.00	FT
LENGTH			583.0	FT	583.0	FT
TOTAL CROSS-SECTIONAL AREA			56.00	SF	56.00	SF
MANNING'S ROUGHNESS	0.012		0.0	12		
UPSTREAM INVERT			75.70	FT	75.70	FT
DOWNSTREAM INVERT			75.50	FT	75.20	FT
CRITICAL ELEVATION (ROADWAY SHOULDER	REL)		83.00	FT	83.00	FT
TAILWATER (CROWN OF PIPE)			79.50	FT	79.20	FT
DETERMINE FLOWRATES (Q):			Headw		11000	
ASSUMED VELOCITY (25 YR)	6.00	FT/S	Elevat	3151	Heady Eleva	1,000
Q (25 YR) = V (25 YR) * TOTAL AREA	336	CFS	81.33	FT	81.03	FT
Q (50 YR) = 1.25 * Q (25 YR)	420	CFS	82.35	FT	82.05	FT
Q (100 YR) = 1 40 ° Q (25 YR)	470	CFS	83.00	ET	82.77	FT

100 year headwater elevation exceeds the childal elevation

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-9 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 336 cfs Design Flow: 420 cfs Maximum Flow: 470 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-9E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
81.33	336.00	336.00	0.00	1
81.47	349.40	349.40	0.00	1
81.63	362.80	362.80	0.00	1
81.79	376.20	376.20	0.00	1
81.95	389.60	389.60	0.00	1
82.13	403.00	403.00	0.00	1
82.30	416.40	416.40	0.00	1
82.35	420.00	420.00	0.00	1
82.68	443.20	443.20	0.00	1
82.87	456.60	456.60	0.00	1
83.01	470.00	465.59	2.21	36
83.00	465.23	465.23	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
336.00	336.00	81.33	4.480	5.625	4-FFf	4.000	2.615	4.000	4.000	6.000	0.000
349.40	349.40	81.47	4.615	5.774	4-FFf	4.000	2,684	4.000	4.000	6.239	0.000
362.80	362.80	81.63	4.753	5.928	4-FFf	4.000	2.753	4.000	4.000	6.479	0.000
376.20	376.20	81.79	4.892	6.088	4-FFf	4.000	2.820	4.000	4.000	6.718	0.000
389.60	389.60	81.95	5.034	6.254	4-FFf	4,000	2.887	4.000	4,000	6.957	0.000
403.00	403.00	82.13	5.179	6.426	4-FFf	4.000	2.952	4.000	4.000	7.196	0.000
416.40	416.40	82.30	5.327	6.603	4-FFf	4.000	3.017	4.000	4.000	7.436	0.000
420.00	420.00	82.35	5.367	6.652	4-FFf	4.000	3.035	4.000	4.000	7.500	0.000
443.20	443.20	82,68	5.632	6.976	4-FFf	4.000	3.146	4.000	4.000	7.914	0.000
456.60	456.60	82.87	5.790	7.171	4-FFf	4.000	3.209	4.000	4.000	8,154	0.000
470.00	465.59	83.01	5.898	7.305	4-FFf	4.000	3.251	4.000	4.000	8.314	0.000

Straight Culvert

Inlet Elevation (invert): 75.70 ft, Outlet Elevation (invert): 75.50 ft

Culvert Length: 583.00 ft, Culvert Slope: 0.0003

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 75.70 ft
Outlet Station: 583.00 ft

Outlet Elevation: 75.50 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-9E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
336.00	79.50	4.00
349.40	79.50	4.00
362.80	79.50	4.00
376.20	79.50	4.00
389.60	79.50	4.00
403.00	79.50	4.00
416.40	79.50	4.00
420.00	79.50	4.00
443.20	79.50	4.00
456.60	79.50	4.00
470.00	79.50	4.00

Tailwater Channel Data - CD-9E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 79.50 ft

Roadway Data for Crossing: CD-9E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft
Crest Elevation: 83.00 ft
Roadway Surface: Paved

Roadway Top Width: 490.00 ft

CD-9 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 336 cfs Design Flow: 420 cfs

Maximum Flow: 470 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-9P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
81.03	336.00	336.00	0.00	1
81.17	349.40	349.40	0.00	1
81.33	362.80	362.80	0.00	1
81.49	376.20	376.20	0.00	1
81.65	389.60	389.60	0.00	1
81.83	403.00	403.00	0.00	1
82.00	416.40	416.40	0.00	1
82.05	420.00	420.00	0.00	1
82.38	443.20	443.20	0.00	1
82.57	456.60	456.60	0.00	1
82.77	470.00	470.00	0.00	1
83.00	484.80	484.80	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
336.00	336.00	81.03	4.479	5.325	4-FFf	4.000	2.615	4.000	4.000	6.000	0.000
349.40	349.40	81.17	4.614	5.474	4-FFf	4.000	2.684	4.000	4.000	6.239	0.000
362.80	362.80	81.33	4.752	5.628	4-FFf	4.000	2.753	4.000	4.000	6.479	0.000
376.20	376.20	81.49	4.891	5.788	4-FFf	4.000	2.820	4.000	4.000	6.718	0.000
389.60	389.60	81.65	5.033	5.954	4-FFf	4.000	2.887	4.000	4.000	6.957	0.000
403.00	403.00	81.83	5.178	6.126	4-FFf	4.000	2.952	4.000	4.000	7.196	0.000
416.40	416.40	82.00	5.326	6.303	4-FFf	4.000	3.017	4.000	4.000	7.436	0.000
420.00	420.00	82.05	5.366	6.352	4-FFf	4.000	3.035	4.000	4.000	7.500	0.000
443.20	443.20	82.38	5.631	6.676	4-FFf	4.000	3.146	4.000	4.000	7.914	0.000
456.60	456.60	82.57	5.789	6.871	4-FFf	4.000	3.209	4.000	4.000	8.154	0.000
470.00	470.00	82.77	5.950	7.071	4-FFf	4.000	3.271	4.000	4.000	8.393	0.000

Straight Culvert

Inlet Elevation (invert): 75.70 ft, Outlet Elevation (invert): 75.20 ft

Culvert Length: 583.00 ft, Culvert Slope: 0.0009

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 75.70 ft
Outlet Station: 583.00 ft
Outlet Elevation: 75.20 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-9P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
336.00	79.20	4.00
349.40	79.20	4.00
362.80	79.20	4.00
376.20	79.20	4.00
389.60	79.20	4.00
403.00	79.20	4.00
416.40	79.20	4.00
420.00	79.20	4.00
443.20	79.20	4.00
456.60	79.20	4.00
470.00	79.20	4.00

Tailwater Channel Data - CD-9P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 79.20 ft

Roadway Data for Crossing: CD-9P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 83.00 ft Roadway Surface: Paved

Roadway Top Width: 490.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

DATE

SR 25- Jun-1

made by: SR 25-Jun-15 checked by: BJS 25-Jun-15 HNTB job #: 59219

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.				(CD	-10	
			Existi	ng		Propo	sed
LOCATION		STA.	914+00	0.00		914+0	0.00
WIDTH			7.00	FT		7.00	FT
HEIGHT			4.00	FT		4.00	FT
BARRELS			2			2	
DIAMETER				FT		7.00	FT
LENGTH			250.0	FT		558.0	FT
TOTAL CROSS-SECTIONAL AREA			56.00	SF		56.00	SF
MANNING'S ROUGHNESS			0.01	2		0.0	12
UPSTREAM INVERT			79.50	FT		79.50	FT
DOWNSTREAM INVERT			79.25	FT		78.70	FT
CRITICAL ELEVATION (ROADWAY SHOULDER EL)			87.50	FT		87.50	FT
TAILWATER (CROWN OF PIPE)			83.25	FT		82.70	FT
DETERMINE EL OMBATES (O).							
DETERMINE FLOWRATES (Q):			Haaduu	oto =		Lloody	
ACCUMED VELOCITY (OF VD)	0.00	ET/C	Headw			Heady	
ASSUMED VELOCITY (25 YR)	6.00	FT/S	Elevat	ION	·	Eleva	illon
Q (25 YR) = V (25 YR) * TOTAL AREA	336	CFS	84.51	FT		84.21	FT
Q (50 YR) = 1.25 * Q (25 YR)	420	CFS	85.22	FT		85.17	FT
Q (100 YR) = 1.40 * Q (25 YR)	470	CFS	85.72	FT		85.85	FT

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-10 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 336 cfs Design Flow: 420 cfs

Maximum Flow: 470 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-10E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
84.51	336.00	336.00	0.00	1
84.61	349.40	349.40	0.00	1
84.72	362.80	362.80	0.00	1
84.83	376.20	376.20	0.00	1
84.95	389.60	389.60	0.00	1
85.06	403.00	403.00	0.00	1
85.19	416.40	416.40	0.00	1
85.22	420.00	420.00	0.00	1
85.45	443.20	443.20	0.00	1
85.58	456.60	456.60	0.00	1
85.72	470.00	470.00	0.00	1
87.50	616.62	616.62	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
336.00	336.00	84.51	4.478	5.012	4-FFf	4.000	2.615	4.000	4.000	6.000	0.000
349.40	349.40	84.61	4.614	5.114	4-FFf	4.000	2.684	4.000	4.000	6,239	0.000
362.80	362.80	84.72	4.751	5.221	4-FFf	4.000	2.753	4.000	4.000	6,479	0.000
376.20	376.20	84.83	4.891	5.332	4-FFf	4.000	2.820	4.000	4.000	6.718	0.000
389.60	389.60	84.95	5.033	5.446	4-FFf	4.000	2.887	4.000	4.000	6.957	0.000
403.00	403.00	85.06	5.178	5.565	4-FFf	4.000	2.952	4.000	4.000	7.196	0.000
416.40	416.40	85.19	5.326	5.688	4-FFf	4.000	3.017	4.000	4.000	7.436	0.000
420.00	420.00	85.22	5.366	5.721	4-FFf	4.000	3.035	4.000	4.000	7.500	0.000
443.20	443.20	85.45	5.631	5.945	4-FFf	4.000	3.146	4.000	4.000	7.914	0.000
456.60	456.60	85.58	5.788	6.080	4-FFf	4.000	3.209	4.000	4.000	8.154	0.000
470.00	470.00	85.72	5.950	6.219	4-FFf	4.000	3.271	4.000	4.000	8.393	0.000

Straight Culvert

Inlet Elevation (invert): 79.50 ft, Outlet Elevation (invert): 79.25 ft

Culvert Length: 250.00 ft, Culvert Slope: 0.0010

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 79.50 ft
Outlet Station: 250.00 ft

Outlet Elevation: 79.25 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-10E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
336.00	83.25	4.00
349.40	83.25	4.00
362.80	83.25	4.00
376.20	83.25	4.00
389.60	83.25	4.00
403.00	83.25	4.00
416.40	83.25	4.00
420.00	83.25	4.00
443.20	83.25	4.00
456.60	83.25	4.00
470.00	83.25	4.00

Tailwater Channel Data - CD-10E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 83.25 ft

Roadway Data for Crossing: CD-10E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length; 2000.00 ft Crest Elevation: 87.50 ft Roadway Surface: Paved

Roadway Top Width: 165.00 ft

CD-10 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 336 cfs Design Flow: 420 cfs Maximum Flow: 470 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-10P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
84.15	336.00	336.00	0.00	1
84.26	349.40	349.40	0.00	1
84.49	362.80	362.80	0.00	1
84.47	376.20	376.20	0.00	1
84.58	389.60	389.60	0.00	1
84.69	403.00	403.00	0.00	1
84.90	416.40	416.40	0.00	1
85.00	420.00	420.00	0.00	1
85.49	443.20	443.20	0.00	1
85.74	456.60	456.60	0.00	1
85.97	470.00	470.00	0.00	1
87.50	555.43	555.43	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
336.00	336.00	84.15	4.477	4.653	7-M1t	3.512	2.615	3.800	4.000	6.316	0.000
349.40	349.40	84.26	4.613	4.759	7-M1t	3.618	2.684	3.800	4.000	6.568	0.000
362.80	362.80	84.49	4.750	4.987	7-M2t	4.000	2.753	3.800	4.000	6.820	0.000
376.20	376.20	84.47	4.890	4.973	3-M2t	4.000	2.820	3.800	4.000	7.071	0.000
389.60	389.60	84.58	5.032	5.080	3-M2t	4.000	2.887	3.800	4.000	7.323	0.000
403.00	403.00	84.69	5.177	5.188	3-M2t	4.000	2.952	3.800	4.000	7.575	0.000
416.40	416.40	84.90	5.325	5.400	7-M2t	4.000	3.017	3.800	4.000	7.827	0.000
420.00	420.00	85.00	5.365	5.499	7-M2t	4.000	3.035	3.800	4.000	7.895	0.000
443.20	443.20	85.49	5.630	5.992	7-M2t	4.000	3.146	3.800	4.000	8.331	0.000
456.60	456.60	85.74	5.787	6.235	7-M2t	4.000	3.209	3.800	4.000	8.583	0.000
470.00	470.00	85.97	5.949	6.470	7-M2t	4.000	3.271	3.800	4.000	8.835	0.000

Straight Culvert

Inlet Elevation (invert): 79.50 ft, Outlet Elevation (invert): 78.70 ft

Culvert Length: 558.00 ft, Culvert Slope: 0.0014

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft
Inlet Elevation: 79.50 ft
Outlet Station: 558.00 ft

Outlet Elevation: 78.70 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-10P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
336.00	82.50	4.00
349.40	82.50	4.00
362.80	82.50	4.00
376.20	82.50	4.00
389.60	82.50	4.00
403.00	82.50	4.00
416.40	82.50	4.00
420.00	82.50	4.00
443.20	82.50	4.00
456.60	82.50	4.00
470.00	82.50	4.00

Tailwater Channel Data - CD-10P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 82.50 ft

Roadway Data for Crossing: CD-10P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 87.50 ft Roadway Surface: Paved

Roadway Top Width: 477.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	25-Jun-14
checked by:	BJS	25-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.		11.0	C	D-11	
		Exist	ing	Prop	osed
LOCATION	STA.	984+0	0.00	984+0	00.00
WIDTH		7.00	FT	7.00	FT
HEIGHT		5.00	FT	5.00	FT
BARRELS		2	100	2	
DIAMETER			FT	7.00	FT
LENGTH		477.0	FT	581.0	FT
TOTAL CROSS-SECTIONAL AREA		70.00	SF	70.00	SF
MANNING'S ROUGHNESS		0.01	2	0.0	12
UPSTREAM INVERT		82.45	FT	82.00	FT
DOWNSTREAM INVERT		81.65	FT	80.90	FT
CRITICAL ELEVATION (ROADWAY SHOULDER	REL)	89.20	FT	89.20	FT
TAILWATER (CROWN OF PIPE)		86.65	FT	85.90	FT
DETERMINE FLOWRATES (Q):		-7007	10/19	100mm V	
ASSUMED VELOCITY (25 YR)	6.00 FT/S	Headw Eleva		Head Eleva	11 213 21
Q (25 YR) = V (25 YR) * TOTAL AREA	420 CFS	88.16	FT	87.80	FT
Q (50 YR) = 1.25 * Q (25 YR)	525 CFS	89.01	FT	88.49	FT
O (100 YR) = 1.40 ° Q (25 YR)	588 CFS	89.20	FF	89.15	FT

¹⁰⁰ year headwater elevation exceeds the ordical elevation
* Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-11 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 420 cfs

Design Flow: 525 cfs

Maximum Flow: 588 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-11E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
88.16	420.00	420.00	0.00	(1)
88.29	436.80	436.80	0.00	1
88,41	453.60	453.60	0.00	1
88.55	470.40	470.40	0.00	1
88.68	487.20	487.20	0.00	1
88.83	504.00	504.00	0.00	1
88.97	520.80	520,80	0.00	1
89.01	525.00	525.00	0.00	1
89.21	554.40	546.53	5.75	29
89.22	571.20	547.99	21.04	5
89.23	588.00	549.11	36.55	4
89.20	545.47	545.47	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
420.00	420.00	88.16	5.156	5.712	4-FFf	3.918	3.035	5.000	5.000	6.000	0.000
436.80	436.80	88.29	5.304	5.835	4-FFf	4.038	3.115	5.000	5.000	6.240	0.000
453.60	453.60	88.41	5.453	5.963	4-FFf	4.156	3.195	5.000	5.000	6.480	0.000
470.40	470.40	88.55	5.604	6.096	4-FFf	4.273	3.273	5.000	5,000	6.720	0.000
487.20	487.20	88.68	5.756	6.234	4-FFf	4.390	3.350	5.000	5.000	6.960	0.000
504.00	504.00	88.83	5.910	6.377	4-FFf	4.507	3.427	5.000	5.000	7.200	0.000
520.80	520.80	88.97	6.066	6.525	4-FFf	5.000	3.503	5.000	5.000	7.440	0.000
525.00	525.00	89.01	6.105	6.562	4-FFf	5.000	3.522	5.000	5.000	7.500	0.000
554.40	546.53	89.21	6.309	6.760	4-FFf	5.000	3.617	5.000	5.000	7.808	0.000
571.20	547.99	89.22	6.323	6.774	4-FFf	5.000	3.624	5.000	5.000	7.828	0.000
588.00	549,11	89.23	6,334	6.784	4-FFf	5.000	3.629	5.000	5.000	7.844	0.000

Straight Culvert

Inlet Elevation (invert): 82.45 ft, Outlet Elevation (invert): 81.65 ft

Culvert Length: 477.00 ft, Culvert Slope: 0.0017

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 82.45 ft Outlet Station: 477.00 ft Outlet Elevation: 81.65 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 5.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-11E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	
420.00	86.65	5.00	
436.80	86.65	5.00	
453.60	86.65	5.00	
470.40	86.65	5.00	
487.20	86.65	5.00 5.00	
504.00	86.65		
520.80	86.65	5.00	
525.00	86.65	5.00	
554.40	86.65	5.00	
571.20	86.65	5.00	
588.00	86.65	5.00	

Tailwater Channel Data - CD-11E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 86.65 ft

Roadway Data for Crossing: CD-11E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 89.20 ft Roadway Surface: Paved

Roadway Top Width: 470.00 ft

CD-11 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 420 cfs Design Flow: 525 cfs Maximum Flow: 588 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-11P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
87.80	420.00	420.00	0.00	1
87.69	436.80	436.80	0.00	1
87.83	453.60	453.60	0.00	1
87.98	470.40	470.40	0.00	1
88.13	487.20	487.20	0.00	1
88.29	504.00	504.00	0.00	-1
88.45	520.80	520.80	0.00	1
88.49	525.00	525.00	0.00	1
88.79	554.40	554.40	0.00	1
88.97	571.20	571.20	0.00	1
89.15	588.00	588.00	0.00	1
89.20	592.42	592.42	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Nomal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
420.00	420.00	87.80	5.156	5.801	3-M1f	3.742	3.035	5.000	5.000	6.000	0.000
436.80	436.80	87.69	5.304	5.694	4-FFf	3.855	3.115	5.000	5.000	6.240	0.000
453.60	453.60	87.83	5.453	5.835	4-FFf	3.967	3.195	5.000	5.000	6.480	0.000
470.40	470.40	87.98	5.603	5.981	4-FFf	4.080	3.273	5.000	5.000	6.720	0.000
487.20	487.20	88.13	5.755	6.132	4-FFf	4.190	3.350	5.000	5.000	6.960	0.000
504.00	504.00	88.29	5.909	6.288	4-FFf	4.301	3.427	5.000	5.000	7.200	0.000
520.80	520.80	88.45	6.065	6.450	4-FFf	4.411	3.503	5.000	5.000	7.440	0.000
525.00	525.00	88.49	6.104	6.492	4-FFf	4.439	3.522	5.000	5.000	7.500	0.000
554.40	554.40	88.79	6.384	6.790	4-FFf	5.000	3.652	5.000	5.000	7.920	0.000
571.20	571,20	88.97	6.548	6.968	4-FFf	5.000	3.725	5.000	5.000	8.160	0.000
588.00	588.00	89.15	6.715	7.151	4-FFf	5.000	3.798	5.000	5.000	8.400	0,000

Inlet Elevation (invert): 82.00 ft, Outlet Elevation (invert): 80.90 ft

Culvert Length: 581.00 ft, Culvert Slope: 0.0019

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 82.00 ft
Outlet Station: 581.00 ft
Outlet Elevation: 80.90 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Concrete Box

Barrel Span: 7.00 ft Barrel Rise: 5.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-11P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
420.00	85.90	5.00
436.80	85.90	5.00
453.60	85.90	5.00
470.40	85.90	5.00
487.20	85.90	5.00
504.00	85.90	5.00
520.80	85.90	5.00
525.00	85.90	5.00
554.40	85.90	5.00
571.20	85.90	5.00
588.00	85.90	5.00

Tailwater Channel Data - CD-11P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 85.90 ft

Roadway Data for Crossing: CD-11P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft
Crest Elevation: 89.20 ft
Roadway Surface: Paved

Roadway Top Width: 535.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

		DATE
made by:	SR	24-Jun-14
checked by:	BJS	24-Jun-14
HNTB job #:	59219	

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.			C	D-12		
		Existi	ng	Prope	osed	
LOCATION	STA.	1083+1	9.00	1083+19.00		
WIDTH		3.00	FT	3.50	FT	
HEIGHT		3.00	FT	3.50	FT	
BARRELS		2	1 1 1	2		
DIAMETER		3.00	FT	3.50	FT	
LENGTH		415.0	FT	612.0	FT	
TOTAL CROSS-SECTIONAL AREA		14.14	SF	19.24	SF	
MANNING'S ROUGHNESS		0.01	2	0.0	12	
UPSTREAM INVERT		83.44	FT	83.44	FT	
DOWNSTREAM INVERT		82.45	FT	82.45	FT	
CRITICAL ELEVATION (ROADWAY SHOULDE	R EL)	91.00	FT	91.00	FT	
TAILWATER (CROWN OF PIPE)		85.45	FT	85.95	FT	
DETERMINE FLOWRATES (Q):		Neady	votor	Head	unter	
ASSUMED VELOCITY (25 YR)	6.00 FT/S	Headw Eleva	(P)(P(S))	Head Eleva	12.55	
Q (25 YR) = V (25 YR) * TOTAL AREA	85 CFS	87,72	FT	87.33	FT	
Q (50 YR) = 1.25 * Q (25 YR)	106 CFS	88.98	FT	88.10	FT	
Q (100 YR) = 1.40 * Q (25 YR)	119 CFS	89.90	FT	88.65	FT	

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-12 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 85 cfs Design Flow: 106 cfs Maximum Flow: 119 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-12E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
87.72	85.00	85.00	0.00	1
87.90	88.40	88.40	0.00	1
88.10	91.80	91.80	0.00	1
88.30	95.20	95.20	0.00	1
88.50	98.60	98.60	0.00	1
88.72	102.00	102.00	0.00	1
88.94	105.40	105.40	0.00	1
88.98	106.00	106.00	0.00	1
89.40	112.20	112.20	0.00	1
89.65	115.60	115.60	0.00	1
89.90	119.00	119.00	0.00	1
91.00	132.91	132.91	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
85.00	85.00	87.72	3,461	4.280	4-FFf	3.000	2.121	3.000	3.000	6.013	0.000
88.40	88.40	87.90	3.576	4.465	4-FFf	3.000	2.163	3.000	3.000	6.253	0.000
91.80	91.80	88.10	3.695	4.657	4-FFf	3.000	2,204	3.000	3.000	6.494	0.000
95.20	95.20	88.30	3.817	4.857	4-FFf	3.000	2.244	3.000	3.000	6.734	0.000
98.60	98.60	88.50	3.944	5.064	4-FFf	3.000	2.283	3.000	3.000	6.975	0.000
102.00	102.00	88.72	4.075	5.278	4-FFf	3.000	2,320	3.000	3.000	7.215	0.000
105.40	105.40	88.94	4.211	5.500	4-FFf	3.000	2.357	3.000	3.000	7.456	0.000
106.00	106.00	88.98	4.235	5.540	4-FFf	3.000	2.363	3.000	3.000	7.498	0.000
112.20	112.20	89.40	4.497	5.965	4-FFf	3,000	2.426	3.000	3.000	7.937	0.000
115.60	115.60	89.65	4.647	6.208	4-FFf	3,000	2.459	3.000	3.000	8.177	0.000
119.00	119.00	89.90	4.802	6.459	4-FFf	3.000	2.491	3.000	3.000	8.418	0.000

Inlet Elevation (invert): 83.44 ft, Outlet Elevation (invert): 82.45 ft

Culvert Length: 415.00 ft, Culvert Slope: 0.0024

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Outlet Elevation: 83.44 ft
Outlet Station: 415.00 ft
Outlet Elevation: 82.45 ft

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Circular

Barrel Diameter: 3.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-12E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
85.00	85.45	3.00
88.40	85.45	3,00
91.80	85.45	3.00
95.20	85.45	3.00
98.60	85.45	3.00
102.00	85.45	3.00
105.40	85.45	3.00
106.00	85.45	3.00
112.20	85.45	3.00
115.60	85.45	3.00
119.00	85.45	3.00

Tailwater Channel Data - CD-12E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 85.45 ft

Roadway Data for Crossing: CD-12E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 91.00 ft Roadway Surface: Paved

Roadway Top Width: 374.00 ft

CD-12 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 85 cfs
Design Flow: 106 cfs
Maximum Flow: 119 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-12P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
87.33	85.00	85.00	0.00	1
87.44	88.40	88.40	0.00	1
87.56	91.80	91.80	0.00	1
87.68	95.20	95.20	0.00	1
87.81	98.60	98.60	0.00	1
87.94	102.00	102.00	0.00	1
88.07	105.40	105.40	0.00	1
88.10	106.00	106.00	0.00	1
88.35	112.20	112.20	0.00	1
88.50	115.60	115.60	0.00	1
88.65	119.00	119.00	0.00	1
91.00	162.61	162.61	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
85.00	85.00	87.33	3.075	3.930	4-FFf	2.835	2.026	3.500	3,500	4.417	0.000
88.40	88.40	87.44	3.153	4.042	4-FFf	2.992	2.066	3.500	3.500	4.594	0.000
91.80	91.80	87.56	3.232	4.159	4-FFf	3.168	2.111	3.500	3.500	4.771	0.000
95.20	95.20	87.68	3.310	4.281	4-FFf	3.500	2.151	3.500	3.500	4.947	0.000
98.60	98.60	87.81	3.389	4.407	4-FFf	3.500	2.190	3.500	3.500	5.124	0.000
102.00	102.00	87.94	3.469	4.537	4-FFf	3.500	2,228	3.500	3.500	5.301	0.000
105.40	105.40	88.07	3.550	4.672	4-FFf	3.500	2.266	3.500	3.500	5.478	0.000
106.00	106.00	88.10	3.564	4.696	4-FFf	3.500	2.273	3.500	3,500	5.509	0.000
112.20	112.20	88.35	3.715	4.954	4-FFf	3.500	2.343	3.500	3.500	5.831	0.000
115.60	115.60	88.50	3.799	5.102	4-FFf	3.500	2.379	3.500	3.500	6.008	0.000
119.00	119.00	88.65	3.885	5.254	4-FFf	3.500	2.414	3.500	3.500	6.184	0.000

Inlet Elevation (invert): 83.40 ft, Outlet Elevation (invert): 82.45 ft

Culvert Length: 612,00 ft, Culvert Slope: 0.0016

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 83.40 ft
Outlet Station: 612.00 ft
Outlet Elevation: 82.45 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 3.50 ft Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-12P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
85.00	85.95	3.50
88.40	85.95	3.50
91.80	85.95	3.50
95.20	85.95	3.50
98.60	85.95	3.50
102.00	85.95	3.50
105.40	85.95	3.50
106.00	85.95	3.50
112.20	85.95	3.50
115.60	85.95	3.50
119.00	85.95	3.50

Tailwater Channel Data - CD-12P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 85.95 ft

Roadway Data for Crossing: CD-12P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 91.00 ft Roadway Surface: Paved

Roadway Top Width: 564.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

DATE

made by: SR 25-Jun-15 checked by: BJS 25-Jun-15

HNTB job #: 59219

PROJECT: I-4 PD&E - Segment 1

CROSS DRAIN NO.			(CD	-13			
•	_		Existing			Propo	sed	
LOCATION		STA.	1138+20.00			1138+20.00		
					Ī			
WIDTH			2.50	FT		3.00	FT	
HEIGHT			2.50	FT		3.00	FT	
BARRELS			2			2		
DIAMETER			2.50	FT		3.00	FT	
LENGTH			247.0	FT		356.0	FT	
TOTAL CROSS-SECTIONAL AREA			9.82	SF		14.14	SF	
MANNING'S ROUGHNESS			0.012			0.012		
UPSTREAM INVERT			96.10	FT		96.10	FT	
DOWNSTREAM INVERT			94.85	FT		94.85	FT	
CRITICAL ELEVATION (ROADWAY SHOULDER EL)			103.50	FT		103.50	FT	
TAILWATER (CROWN OF PIPE)			97.35	FT		97.85	FT	
DETERMINE FLOWRATES (Q):								
			Headw	ater		Headv	vater	
ASSUMED VELOCITY (25 YR)	6.00	FT/S	Elevat	ion	L	Eleva	ition	
Q (25 YR) = V (25 YR) * TOTAL AREA	59	CFS	99.27	FT	L	99.10	FT	
Q (50 YR) = 1.25 * Q (25 YR)	74	CFS	100.38	FT	Ĺ	99.51	FT	
Q (100 YR) = 1.40 * Q (25 YR)	82	CFS	101.07	FT		99.89	FT	

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-13 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method; Specify Minimum, Design, and Maximum Flow

Minimum Flow: 59 cfs

Design Flow: 74 cfs Maximum Flow: 82 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-13E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
99.27	59.00	59.00	0.00	1
99.43	61.30	61.30	0.00	1
99.59	63.60	63.60	0.00	1
99.75	65.90	65.90	0.00	1
99.92	68.20	68.20	0.00	1
100.10	70.50	70.50	0.00	1
100.28	72.80	72.80	0.00	1
100.38	74.00	74.00	0.00	1
100.66	77.40	77.40	0.00	1
100.86	79.70	79.70	0.00	1
101.07	82.00	82.00	0.00	1
103.50	105.49	105.49	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
59.00	59.00	99.27	3.113	3.174	4-FFf	1.918	1.849	2,500	2.500	6.010	0.000
61.30	61.30	99.43	3.224	3.327	4-FFf	1.987	1.884	2.500	2.500	6.244	0.000
63.60	63.60	99.59	3.338	3.485	4-FFf	2,063	1.918	2.500	2.500	6.478	0.000
65.90	65.90	99.75	3.457	3.650	4-FFf	2.179	1.951	2.500	2.500	6.713	0.000
68.20	68.20	99.92	3.580	3.820	4-FFf	2.500	1.983	2.500	2.500	6.947	0.000
70.50	70.50	100.10	3.708	3.997	4-FFf	2,500	2.014	2,500	2.500	7.181	0.000
72.80	72.80	100.28	3.841	4.179	4-FFf	2,500	2.043	2,500	2.500	7.415	0.000
74.00	74.00	100.38	3.912	4.276	4-FFf	2,500	2.058	2,500	2.500	7.538	0.000
77.40	77.40	100.66	4.120	4.561	4-FFf	2,500	2.099	2.500	2.500	7.884	0.000
79.70	79.70	100.86	4.267	4.760	4-FFf	2,500	2.125	2,500	2.500	8.118	0.000
82.00	82.00	101.07	4.419	4.966	4-FFf	2.500	2.149	2.500	2.500	8.352	0.000

Inlet Elevation (invert): 96.10 ft, Outlet Elevation (invert): 94.85 ft

Culvert Length: 247.00 ft, Culvert Slope: 0.0051

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 96.10 ft
Outlet Station: 247.00 ft

Outlet Elevation: 94.85 ft

Suiter Elevation. 54.65

Number of Barrels: 2

Culvert Data Summary - EXIST

Barrel Shape: Circular

Barrel Diameter: 2.50 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-13E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
59.00	97.35	2.50
61.30	97.35	2.50
63.60	97.35	2.50
65.90	97.35	2.50
68.20	97.35	2.50
70.50	97.35	2.50
72.80	97.35	2.50
74.00	97.35	2.50
77.40	97.35	2.50
79.70	97.35	2.50
82.00	97.35	2.50

Tailwater Channel Data - CD-13E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 97.35 ft

Roadway Data for Crossing: CD-13E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 103.50 ft Roadway Surface: Paved

Roadway Top Width: 200.00 ft

CD-13 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 59 cfs
Design Flow: 74 cfs
Maximum Flow: 82 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-13P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
99.06	59.00	59.00	0.00	1
99.15	61.30	61.30	0.00	1
99.24	63.60	63.60	0.00	1
99.33	65.90	65.90	0.00	1
99.43	68.20	68.20	0.00	1
99.54	70.50	70.50	0.00	1
99.65	72.80	72.80	0.00	1
99.71	74.00	74.00	0.00	1
99.56	77.40	77.40	0.00	1
99.67	79.70	79.70	0.00	1
99.77	82.00	82.00	0.00	1
103.50	140.54	140.54	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
59.00	59.00	99.06	2.667	2.964	3-M1f	1.829	1.754	3.000	3.000	4.173	0.000
61.30	61.30	99.15	2.734	3.049	3-M1f	1.875	1.789	3.000	3.000	4.336	0.000
63.60	63.60	99.24	2.801	3.139	3-M1f	1.923	1.827	3.000	3.000	4.499	0.000
65.90	65.90	99.33	2.868	3.233	3-M1f	1.974	1.860	3.000	3.000	4.661	0.000
68.20	68.20	99.43	2.936	3.333	3-M1f	2.024	1.893	3.000	3.000	4.824	0.000
70.50	70.50	99.54	3.004	3.441	3-M1f	2.074	1.926	3.000	3.000	4.987	0.000
72.80	72.80	99.65	3.073	3.554	3-M1f	2.125	1.958	3.000	3.000	5.150	0.000
74.00	74.00	99.71	3.110	3.614	3-M1f	2.151	1.974	3.000	3.000	5.234	0.000
77.40	77.40	99.56	3.215	3.464	4-FFf	2.235	2.019	3.000	3.000	5.475	0.000
79.70	79.70	99.67	3.287	3.567	4-FFf	2.296	2.053	3.000	3.000	5.638	0.000
82.00	82.00	99.77	3.361	3.673	4-FFf	2.357	2.083	3.000	3.000	5.800	0.000

Inlet Elevation (invert): 96.10 ft, Outlet Elevation (invert): 94.85 ft

Culvert Length: 356.00 ft, Culvert Slope: 0.0035

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft
Inlet Elevation: 96.10 ft

Outlet Station: 356.00 ft
Outlet Elevation: 94.85 ft

Number of Barrels: 2

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 3.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-13P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
59.00	97.85	3.00
61.30	97.85	3.00
63.60	97.85	3.00
65.90	97.85	3.00
68.20	97.85	3.00
70.50	97.85	3.00
72.80	97.85	3.00
74.00	97.85	3.00
77.40	97.85	3.00
79.70	97.85	3.00
82.00	97.85	3.00

Tailwater Channel Data - CD-13P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 97.85 ft

Roadway Data for Crossing: CD-13P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft
Crest Elevation: 103.50 ft
Roadway Surface: Paved

Roadway Top Width: 365.00 ft

HNTB Corporation

610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

DATE

SR 25- Jun-1

made by: SR 25-Jun-15 checked by: BJS 25-Jun-15 HNTB job #: 59219

PROJECT:

I-4 PD&E - Segment 1

CROSS DRAIN NO.	CD-14						
			Existi	ng		Propo	sed
LOCATION	STA.	1202+15.00		1202+15.00		15.00	
WIDTH			4.00	FT		4.00	FT
HEIGHT			4.00	FT		4.00	FT
BARRELS			1			1	
DIAMETER			4.00	FT		4.00	FT
LENGTH			241.0	FT		372.0	FT
TOTAL CROSS-SECTIONAL AREA			12.57	SF		12.57	SF
MANNING'S ROUGHNESS			0.012			0.012	
UPSTREAM INVERT			99.57	FT	L	99.57	FT
DOWNSTREAM INVERT			98.35	FT		98.20	FT
CRITICAL ELEVATION (ROADWAY SHOULDER EL)			108.00	FT		108.00	FT
TAILWATER (CROWN OF PIPE)			102.35	FT		102.20	FT
DETERMINE FLOWRATES (Q):							
400 H JED V EL 0 0 JEV (0 - V D)		== (0	Headw			Headv	
ASSUMED VELOCITY (25 YR)	6.00	FT/S	Elevat	ion	ŀ	Eleva	ition
Q (25 YR) = V (25 YR) * TOTAL AREA	75	CFS	103.86	FT		103.86	FT
Q (50 YR) = 1.25 * Q (25 YR)	94	CFS	104.55	FT		104.54	FT
Q (100 YR) = 1.40 * Q (25 YR)	106	CFS	105.12	FT		105.24	FT

^{*} Culvert Design Drainage Handbook (2004), Chapter 8, Section 8.1. Culvert Extensions Analysis done with HY-8 Version 7.3 (April 2014)

CD-14 EXISTING HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 75 cfs Design Flow: 94 cfs

Maximum Flow: 106 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-14E

Headwater Elevation (ft)	Total Discharge (cfs)	EXIST Discharge (cfs)	Roadway Discharge (cfs)	Iterations
103.86	75.00	75.00	0.00	1
103.97	78.10	78.10	0.00	1
104.08	81.20	81.20	0.00	1
104.19	84.30	84.30	0.00	1
104.30	87.40	87.40	0.00	1
104.42	90.50	90.50	0.00	1
104.54	93.60	93.60	0.00	1
104.55	94.00	94.00	0.00	1
104.78	99.80	99.80	0.00	1
104.91	102.90	102.90	0.00	1
105.12	106.00	106.00	0.00	1
108.00	151.40	151.40	0.00	Overtopping

Table 2 - Culvert Summary Table: EXIST

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
75.00	75.00	103.86	4.106	4.285	1-S1f	2.411	2.619	4.000	4.000	6.251	0.000
78.10	78.10	103.97	4.229	4.396	1-S1f	2.476	2.674	4.000	4.000	6.510	0.000
81.20	81.20	104.08	4.355	4.507	1-\$1f	2.541	2.727	4.000	4.000	6.768	0.000
84.30	84.30	104.19	4.484	4.620	1-S1f	2.611	2.780	4.000	4.000	7.026	0.000
87.40	87.40	104.30	4.617	4.734	1-S1f	2.681	2.831	4.000	4.000	7.285	0.000
90.50	90.50	104.42	4.753	4.849	1-S1f	2.751	2.881	4.000	4.000	7.543	0.000
93.60	93.60	104.54	4.892	4.966	1-\$1f	2.821	2.929	4.000	4.000	7.801	0.000
94.00	94.00	104.55	4.911	4.981	1-S1f	2.830	2.936	4.000	4.000	7.835	0.000
99.80	99.80	104.78	5.185	5.210	1-S1f	2.972	3.023	4.000	4,000	8.318	0.000
102.90	102.90	104.91	5.338	5.340	1-S1f	3.057	3.068	4.000	4.000	8.577	0.000
106.00	106.00	105.12	5.495	5,549	4-FFf	3.142	3.112	4,000	4.000	8.435	0.000

Inlet Elevation (invert): 99.57 ft, Outlet Elevation (invert): 98.35 ft

Culvert Length: 241.00 ft, Culvert Slope: 0.0051

Site Data - EXIST

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 99.57 ft
Outlet Station: 241.00 ft
Outlet Elevation: 98.35 ft

Number of Barrels: 1

Culvert Data Summary - EXIST

Barrel Shape: Circular

Barrel Diameter: 4.00 ft Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Table 3 - Downstream Channel Rating Curve (Crossing: CD-14E)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
75.00	102.35	4.00
78.10	102.35	4.00
81.20	102.35	4.00
84.30	102.35	4.00
87.40	102.35	4.00
90.50	102.35	4.00
93.60	102.35	4.00
94.00	102.35	4.00
99.80	102.35	4.00
102.90	102.35	4.00
106.00	102.35	4.00

Tailwater Channel Data - CD-14E

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 102.35 ft

Roadway Data for Crossing: CD-14E

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 108.00 ft Roadway Surface: Paved

Roadway Top Width: 182.00 ft

CD-14 PROPOSED HY-8 Culvert Analysis Report

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 75 cfs Design Flow: 94 cfs

Maximum Flow: 106 cfs

Table 1 - Summary of Culvert Flows at Crossing: CD-14P

Headwater Elevation (ft)	Total Discharge (cfs)	PROP Discharge (cfs)	Roadway Discharge (cfs)	Iterations
103.85	75.00	75.00	0.00	1
103.97	78.10	78.10	0.00	1
104.08	81.20	81.20	0.00	1
104.20	84.30	84.30	0.00	1
104.32	87.40	87.40	0.00	1
104.44	90.50	90.50	0.00	1
104.57	93.60	93.60	0.00	1
104.59	94.00	94.00	0.00	1
104.86	99.80	99.80	0.00	1
105.03	102.90	102.90	0.00	1
105.25	106.00	106.00	0.00	1
108.00	140.78	140.78	0.00	Overtopping

Table 2 - Culvert Summary Table: PROP

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
75.00	75.00	103.85	4.108	4.281	7-M1t	2.693	2.619	3.800	4.000	6.082	0.000
78.10	78.10	103.97	4.232	4.396	7-M1t	2.775	2.674	3.800	4.000	6.333	0.000
81.20	81.20	104.08	4.358	4.512	7-M1t	2.857	2.727	3.800	4.000	6.585	0.000
84.30	84.30	104.20	4.487	4.629	7-M1t	2.946	2.780	3.800	4.000	6.836	0.000
87.40	87.40	104.32	4.619	4.750	7-M1t	3.045	2.831	3.800	4.000	7.088	0.000
90.50	90.50	104.44	4.755	4.874	7-M1t	3.145	2.881	3.800	4.000	7.339	0.000
93.60	93.60	104.57	4.895	5.004	7-M1t	3.245	2.929	3.800	4.000	7.590	0.000
94.00	94.00	104.59	4.914	5.021	7-M1t	3.257	2.936	3.800	4.000	7.623	0.000
99.80	99.80	104.86	5.188	5.291	7-M1t	3.559	3.023	3.800	4.000	8.093	0.000
102.90	102.90	105.03	5.341	5.460	3-M2t	4.000	3.068	3.800	4.000	8.345	0.000
106.00	106.00	105.25	5.498	5.684	7-M2t	4.000	3.112	3.800	4.000	8.596	0.000

Straight Culvert

Inlet Elevation (invert): 99.57 ft, Outlet Elevation (invert): 98.20 ft

Culvert Length: 372.00 ft, Culvert Slope: 0.0037

Site Data - PROP

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 99.57 ft
Outlet Station: 372.00 ft
Outlet Elevation: 98.20 ft

Number of Barrels: 1

Culvert Data Summary - PROP

Barrel Shape: Circular

Barrel Diameter: 4.00 ft
Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: CD-14P)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)
75.00	102.00	4.00
78.10	102.00	4.00
81.20	102.00	4.00
84.30	102.00	4.00
87.40	102.00	4.00
90.50	102.00	4.00
93.60	102.00	4.00
94.00	102.00	4.00
99.80	102.00	4.00
102.90	102.00	4.00
106.00	102.00	4.00

Tailwater Channel Data - CD-14P

Tailwater Channel Option: Enter Constant Tailwater Elevation

Constant Tailwater Elevation: 102.00 ft

Roadway Data for Crossing: CD-14P

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 2000.00 ft Crest Elevation: 108.00 ft Roadway Surface: Paved

Roadway Top Width: 342.00 ft

APPENDIX C – CORRESPONDENCE

Sanam Rai

From:

Sanam Rai

Sent:

Tuesday, August 05, 2014 8:35 AM

To:

'Ortiz, Jose' Rivera, Efren

Subject:

RE: I-4 Segment 1 CrossDrain Information

Jose, thank you for the Straight Line Diagram. We do have them included in the Location Hydraulics Report.

Sanam

From: Ortiz, Jose [mailto:Jose.Ortiz@dot.state.fl.us]

Sent: Monday, August 04, 2014 5:22 PM

To: Sanam Rai Cc: Rivera, Efren

Subject: RE: I-4 Segment 1 CrossDrain Information

Hi Sanam,

Please refer to the attached Straight Line Diagram of Road Inventory to <u>identify and verify</u> each of the cross drains within the corridor and locate milepost in your PG&E report.

If you have any questions call me.

Thanks,

Jose M. Ortiz, PE

Permits Manager

D5 - Orlando Operations Center Office: (407) 384-4600 & 384-4603 Email: jose.ortiz@dot.state.fl.us

From: Sanam Rai [mailto:sarai@HNTB.com]
Sent: Monday, August 04, 2014 2:20 PM

To: Ortiz, Jose Cc: Luz Phillip

Subject: I-4 Segment 1 CrossDrain Information

Jose.

Thanks for taking my call earlier regarding the I-4 segment 1 crossdrains. I understand that TME Enterprises is contracted to maintain the crossdrains along I-4. I will coordinate with them as well.

Do you know of any issues (flooding, scour, sedimentation) with any of the crossdrains along segment 1 of the I-4 PD&E project?

Thank you,

Sanam

Sanam Rai, PE Project Engineer - Drainage

HNTB Corporation 610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

Tel (407) 805-0355 Direct (407) 547-3025 Fax (407) 805-0227 www.hntb.com

This e-mail and any files transmitted with it are confidential and are intended solely for the use of the individual or entity to whom they are addressed. If you are NOT the intended recipient and receive this communication, please delete this message and any attachments. Thank you.

Sanam Rai

From:

Sanam Rai

Sent:

Tuesday, August 05, 2014 8:44 AM

To:

'Jeremy Golloway'

Cc:

jose.ortiz@dot.state.fl.us; Luz Phillip; Efren.Rivera@dot.state.fl.us; Barry Switzer; 'Dave

Jackson'

Subject:

RE: I-4 Segment 1 CrossDrain Information

Jeremy,

Thank you for your prompt feedback.

The project is currently in a Project Development and Environmental (PD&E) Study phase. I am not aware of the schedule for the design phase of the project.

Please visit the following website for more information regarding all segments of the I-4 PD&E project: http://i4express.com/

Thanks,

Sanam

From: Jeremy Golloway [mailto:jeremy.golloway@tmeenterprises.com]

Sent: Monday, August 04, 2014 10:10 PM

To: Sanam Rai

Cc: jose.ortiz@dot.state.fl.us; Luz Phillip; Efren.Rivera@dot.state.fl.us; Barry Switzer; 'Dave Jackson'

Subject: RE: I-4 Segment 1 CrossDrain Information

Sanam,

Thank you for the information you provided. To the best of my knowledge, I am not aware of any issues concerning the cross drains you referenced. When is this project slated to start? Please let me know if you need any additional information. Thanks.

Jeremy Golloway

Regional Operations Manager - Florida

Office - (407) 730-2232

Cell - (407) 625-8812

Fax - (407) 704-7642

Email - Jeremy.golloway@tmeenterprises.com

From: Sanam Rai [mailto:sarai@HNTB.com]
Sent: Monday, August 04, 2014 2:53 PM
To: 'jeremy.golloway@tmeenterprises.com'

Cc: jose.ortiz@dot.state.fl.us; Luz Phillip; Efren.Rivera@dot.state.fl.us; Barry Switzer

Subject: I-4 Segment 1 CrossDrain Information

Jeremy,

I am sending you this email regarding the I-4 PD&E segment 1 (from west of CR 532 to west of SR 528) cross drains. I have included a project location map for reference.

I contacted Jose Ortiz at the FDOT maintenance office. He mentioned that TME Enterprises is contracted to maintain the cross drains along I-4 and you are the person of contact.

I am coordinating with you to find out any issues (flooding, scour, sedimentation) with the cross drains along segment 1 of the I-4 PD&E project. There are a total of 15 cross drains we have identified within the segment. I have included the draft Location Hydraulics Report (LHR) for your reference. It includes the existing cross drain information (culvert size, culvert type, culvert length).

Please feel free to call me if you like.

Thank you,

Sanam

Sanam Rai, PE Project Engineer - Drainage

HNTB Corporation 610 Crescent Executive Court, Suite 400 Lake Mary, FL 32746

Tel (407) 805-0355 Direct (407) 547-3025 Fax (407) 805-0227 www.hntb.com

This e-mail and any files transmitted with it are confidential and are intended solely for the use of the individual or entity to whom they are addressed. If you are NOT the intended recipient and receive this communication, please delete this message and any attachments. Thank you.

APPENDIX D — BACK-UP PERMIT DOCUMENTATION

00-3

242525-1-52-01 59 110 100 06 80 00+001 ATS MATCH LINE DRAINAGE MAP (8) POND 4 (\$-400) DRAINAGE BASIN DIVIDE 17 - 400 FLOW ARROW WETLAND -XX DA-43.00 AC SCALE (5-314) (\$-313) DA-408.20 AC S. C. ROBINGON, STREET, SUITE 245 ONLINOS, F. I. SOD-6875 PH. (4071-422-4355). C. Al. (4071-423-4395 M. (4070-423-435). ------3 LEGEND 400 (1-4) END BRIDGE CULVERY 920036 11 8 92009 STA 71 93 76 8 SURVEY 8 6 CONST END BRIDGE CULVERT | -920096 LT 8 -920097 RI STA 71-03-76 E CONST SR WDO (1-4) STATE OF PLORIDA
DEPARTHENT, OF TRANSPORTATION FL 89.50 FL 89.75 24 PIPE 24 PIPE 1 90.00 EXISTING GROUND LINE -\$1313 (8-31) (S-30) (S-30) (S-30) DAVENPORT CREEK :00 EL 94.26 (3) S-6 S-300 WETLAND -7 (\$-5) 200-1 DATE ±00 EL 94,00 FL 84.00 ACBC S-300 BEGIN BRIDGE CULVERT *920096 LT 8 -920097 RT STA 70-34-12 B SURVEY 8 @ CONST SR 400 [1-4] .70 EL 94.50 8-109 CREEK 36 - RCP (36) MED DAVENPORT BEGIN BRIDGE CULVERT -95-005-1-1-2 8 SURVEY 8 € CONST SR 400 (1-4) -WETLAND .4 CD--SPECIAL DITCH DATE BY WETLAND .6-DA-47.10 AC 400 (1-4) DA-15.093.00 AC 91.00 3 2-9 X7 . RCB0 1.32 SR 00÷ B SURVEY & C CONST (3) EL 107.09 20 00 11 109.04 -50 15.56 DA-918.00 15 40+00 gar ATZ 90 80 0 NA C 2500 AN LAND CON LAND AN 9

5-00

CALSACO=1=0/COL.	(3) 24." ROP GRAFT, EL. 80.43 HWERT, EL. 80.43 (3) 18." ROP GRAFT, EL. 85.72 HVERT, EL. 81.41	(B) IN ET ROP (B	(4.5 BUTLO DANIMOS) 1.4 CD ROADS 11/381, 1.4 CD ROADS 11/381, 1.4 CD ROAD 11/381, 1.4 CD	(9) 11W-ERT EL 83:00 11W-ERT EL 83:00 11W-ERT EL 80:059 11W-ERT EL 81:03 10W-ERT EL 81:03 1	GANEEL 13-11 SEEL 172-31 SEEL
		20012/07/	Ş. ₂₆		88
	8- RCP NLET FRATE EL 77.91 INVERT EL 71.42 8- RCP NLET NATE EL 71.94	NO. FCP. RAIE T7. 48 RE 10. 12. 17. 48 E. FL. 10. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	18. 78. 79. 74. 74. 74. 74. 74. 74. 74. 74. 74. 74	TAR ROPE TO STATE TO	35. 75. 75. 75. 75. 75. 75. 75. 75. 75. 7
		M-DZW-SDZW-B		D D D D	(B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
	75.62 75.16 FEL 90.20	DRAWINGS INTO	NT N	775, 91 775, 9	S .
	24 - RCP SE FL 75.62 INLET 75.16 GRATE EL 80.20 36 - RC 74.25 H FL 74.25 A COULTY DOMES	1020-008: PRAPILIOS PRAPIL	148 F. C. P. S. B.	MARTE TE. MARINER	S F 11: 19 S F BUIL 1 PARMI MORLO DE LITTO S S F T 11: 03 SE FL 71: 03 SE FL 71: 03 SE FL 71: 03
	8 8	8	8 8 9	® © S	Signatura o
	STRUCTURE 77.12 L 74.60 OADS 11.781	Mill Ft. 75-70 MALTE EL 78-56 A4-RC RAME EL 78-07 MINETA EL 78-33 MONTROL SIGNA 8-RC 8-RC 8-RC 8-RC 8-RC 8-RC 8-RC 8-RC	E EL 78.25 CEP 74.65 74.65 74.65 74.65 74.09 CEL 78.76 CEL	38-760- ERCP N-ELT-78-83 (AS BUILT DAWINGS MORID DR. 1R7) W FL 73-28 K FL 73-28 K FL 73-28 K FL 73-28 W FL 73-38 W FL 73-	18 - 160 - ERCP - 18 - 160 - ERCP - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1
	CONTROL CONTROL CONTROL CAS BUIL CAS BUIL NW FL 74	SEE TO TO THE CONTROL OF THE CONTROL	A P.	NET 75. NATED 18 NATED 18 NATE	28.760 100.00 10
	***	(8)	© © ©	9 9 9 -	Ø Ø
	7. X4 7. RCBC 72 72 72 72 72 72 72 72 72 72 72 72 72	24. 12. 25. 25. 25. 25. 25. 25. 25. 25. 25. 2	N F (74.38) 10.11 Et 74.40 10.12 Et 74.40 10.12 Et 74.40 10.13 Et 17.35 10.14 Et 10.15 10.14 Et 10.15 10.15 Et 10.15 1	1.4 CO ROADS 11.786 1.6 - ROP 1.8 -	18 - RCP N FL 77.51 GRATE EL 79.56 GRATE EL 79.56
	SWEWS WEWS				191
	0	8 6 6	0 8 8	8 8 8	(B) (C)
	18 - RCP NE. FL 110-13 NA. FE L 112-27 18 - CAP NW. P. L 19-61 NW. P. L 19-61 NW. F. L 19-61	CRAFE EL 123.59 SE FL 16.10 GRATE EL 120.69 24 * 109.58 SE FL 12.62 CRAFE EL 14.24 GRATE EL 14.24 GRATE EL 14.24 WE FL 12.59	AME F L 114.74 117.77	NEW SET 18 103 103 103 103 103 103 103 103 103 103	NEW PART OF THE PA
	(2)	98 6	8 8 8	® ® <u>7</u> ®	8
			w w	3	113
	18 - RCP NW FL 114.25 SE FL 117.19 GRATE EL 121.05 18 - RCP NW FL 114.84	INGE EL 121.37 18	1	MARTER 112. 48 MARTER 112. 48 GAMER 112. 48 MARTER 116. 70	E FL 113.65 WW FL 19.18 WW FL 19.22 WE FL 19.22 WE FL 19.22 WE FL 19.22 WE FL 19.22 GRAFE EL 13.00 GRAFE EL 13.00

(3) (3) (4) (4) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	그녀가 들어가 있다면 그녀는 아무리를 하고 있다. 그리고 있는데 그 사람이 가게 하는 것이라고 있다면 살아 없다.
	18 78 78 78 78 78 78 78

-00

	FLORIDA ECMATRICA DE TRACTORATOR DE TRACTORATOR NO VINGUAL ESTICA SERVICIA PORTO VERGENA MODERATOR DE TRACTORATOR VERGENA MODERATORA DE TRACTORATORA DE TRACTORA DE TR	MATCHAL PROPERTY. SEELEN FOR SHEEL SHEEL IN CORNEC TO BASE SEELEN FOR SHEEL S	FIGE LINE - 235 TT 0 INJ 9 INJ BOTTON SL. 9 INJ BOTTON SL. (43) RIOHE SINE DAY 1 THE BOTTON SINE DAY 1 THE BOTTON SINE DAY	- 22	בסאטבוב מתאוווננג	MARCIL + POLR CROTTOL ELAD + .474 C.Y./77., POLR E CHALES VINGWALL + POLR CROTTHER** + .4168 C.Y., POLR CROTTHER** + 4.168 C.Y., POLR CROTTHER** + 4.1	BAGEL CONTINUES - 208.353 C.Y.1 VINGWALL	שו ואנדותב נבל אם צבו עו מאפבר באפ. - מוצואשל באס נוצני כו אפבר באפבר בעובון באחר בעובון באחר באם באפניבונות ילווים כא כאובה רואה כא אואפאחד. - מוצואשל באפר אואפארד (באוב		4			REVISIONS Pile R. Botthm Dwar
	FLORIAN EEVANTION OF TRANSPORTATION BOT CLAYTET AND VINDALL RESIDENCE ASTRONOMY OF CLAST IN COLUMN 1 TO CLAST IN	D IN DOT. St 3 INVALL- 3 IN	BOOK TO THE TOTAL COLUMN T		1.533 C.Y. 6 IN: RIGHT - 39 FT	346 C.Y./TI., POLR 3 CTOP SLAD TOTAL CENTURE HEADWALD	7.526 C.Y.1	בווסא לפוע מא כמעבע רואב מג אואסאארד בווסא לפוע מא כמעבע רואב מג אואסאארד					Person AG 2-155 Second AG 2-155 Second AG 2-155
9	VERSION NO. 2.20	*	11 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 IN. 3.239 C.Y.	3.239 C.Y.		309,873 C.Y.	960		24		*	E
	PROJECT NUMBER 1	MARKEL DUNYTTTES	TO SLAB RIOHT SIDE. MIT SLAB RIGHT SIDE. TO SLAB.	DOT SLAB RIGHT SIDE.	CORACE (102) CORACE (801109) CORACE (801109) INTERIOR VAL. LDAGITUDINAL	HEADWALL RIGHT SIDE HEADWALL RIGHT SIDE SLAB DNSS RIGHT SIDE	VINGWALL QUANTITIES	STEH-RIGHT PROVI STEH-RIGHT BACK STEH-RIGHT BACK STEH-RIGHT BACK STEH - RIGHT PROVI	TOTING - RIGHT PROFIT TOTING - RIGHT PACK TOTI	LOGIN IS THE SIM OF THE LOGIN BY LOGIN BY LOGIN TO WHEN THE SIMMLE OF UNIVERSITY BY LOGIN BY THE SIMMLE COSE TO THE COSE TO TH	HEVIDE FUR 2 FT. OF BAR) M. T.
		2	A 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	255 MAR 255 MA	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	33-2	BAR 'N	CZ 540;	.E23391.	LENGTH AT BEI GTH. B AND C	IN THE VINGO		1216
	PLORIBA DE BOX CALVE LOCATION DES ENVIRONACAT	STEEL OUANTI	2444444	**************************************	250 C 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		NUMBER SETS SIZE	22000		PER TINGENT AND	ALL AND HEADWALL		LORIDA DEFAITUENT OF TEAMPORTATION STRUCTURES DESIGN OFFICE
	FLORIDA ECMATREAT OF TRANSPORTATION TO CALVEST AND VIRGAAL, RESTOR TOWNSHIP RECEIPTION STA 2510-6 1-6 1576, Jul 3-122 FONTINDSCHIPTION . CORRECT AUGMENTATION, VIR CLASS IV CORRECT	STEEL DUMMITTES AND BAR SOCEDLE R SETS SIZE SPACING TYPE (TT-JN)	777999999 2777	***	2599977 25555	SEC INDEX SEC INDEX POR FOOT MARKE.	SPAC ING	11111	SCE INDEX	PER FIDT VINCANL. TOTAL VINCANL. STHE ANDINT REQUIRED STHE STOR THE FIRST STHE AND SHREEL.			TAMBROSTATION
	KESIGN PESIGN 236+00 [-4 STR PPCLY AGGRESSI	DCDLLE TYPE LENG	7T2v7TY	 		TIEL COMMITTE	TYPE LENGTH	77447	5- FFFYY	STEEL GUMFTITY STEEL GUMFTITY TOTAL STEEL VINGALL	ATOT	,,	BOX CULIERY AT STA. 236+00 1-4 SOUTH EXTENSION
	1. NO. 5-122 IVE. USE CLASS	LENGTH WEIGHT (LE)	20000000000000000000000000000000000000	25 55 55 55 55 55 55 55 55 55 55 55 55 5	3200 3200 1984 1984	22.65	0.2		88888888 8	TILDRE	1		SOUTH EXTR
2	TV CONCRETE	B LENGTH			44	26 0-11 - 16	B LENGTH		Ä	20, LPS, /rggr 561 LPS, /rggr ICS 30726 LPS,	mon cus.		1. 236+00 F
	YERSIDA NO. 2.30	B LENGTH C LENGTH B LENGTH (FT-IN) (FT-IN)			44	6-1	C LENGTH	44					-

WORLD DRIVE EXT / 1-4 ICHG DRAINAGE STRUCTURES S-1 THRU S-113	Night Red 147 143 144 14	9ATT UT SERVICES (C. 6.9) COTION (C. 6.9) COTION (C. 6.9)	HEADER IN THE SECURIOR	NAME OF THE PERSON ASSESSMENT OF THE PERSON
	(5-15) State and Corporation (5-15) State and Control (5-15) State (5-	óo	5	FIGURE 1 100 FOR DETAILS SEE SHEET 100 FOR DETAILS
(-1.0) 2015. 2016. 814. 814. 814. 814. 814. 814. 814. 814	(%-42, 254.4, 64-00, 43-2), LT. SBRU CONST. INET TIPE F-1 INDEX NO. 200 8 210 OUTTH EL. 83-21 F-L. EL. 77-25 (M) (18" RCP)	(3-17) STA - 18-18-18-18-18-18-18-18-18-18-18-18-18-1	(\$-34) \$14, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1	(\$-16) \$14, 72-91, 106 '-17, 8449 C-2 (\$-16) \$14, 72-91, 106 '-17, 8449 C-2 100 tr Will, 272, 108 - 8427104 100 tr Will, 272, 118 - 8427104
100 E. 19. 200 B 201 F.L. EL. 72.78 (MES) (48" 40P)	CRATE EL. 90.40 F.L. EL. 76.40 (EBW) 118" RCP1	S-46 SIA. 532-25, 34.13. Rf. HBPD CONST. INLET TYPE 5	(5-33) STA. 318-25, 10,131 FT. MANP C. CONST. INEE TIPE S	(NDEX NO. 220 CRAFE EL. 109.64 F.L. EL. 103.00 (N) 118" BCCAP)
(5-112) 571, 314-50, 65: NT. HAUP C CONST. MARRIEL THE J-7 ALT, 6 5-0-76:-0.	(\$-61) STA. 648-00, 21' RT. SBMD CONST. Del TYPE A	(5-45) STA. S28-00, 130" MT. NEWD CONST. WITERD END SECTION INDEX NO. 275 F.L. EL. 76-50 (18" BCCNP)	(5.32) STA. 79-65, 46' LT, RAUP C-2 CONST. WITERED ENG SECTION INDEX NO. 272	(S-15) STA. 72-97, 10-13" LT. RAMP C-2
CANTE EL, 60.16 148 REP. SET SACET 107 FOR BETALS	NOET NO. 200 & 210 OUTTER L. 91.61 F.L. EL. 76.50 (58%) (18-80)	SEE SHEET 100 FOR DETAILS	GRATE EL. 88.99 F.L. EL. 83.40 (S) (18-RCP) SEE SHEET 100 FOR DETAILS	(S-14) STA. 619-05, 131 - Mr. 58NO CONST. MITERED END SECTION
S-11) SIA, 53-00, B4' RI. RAMP C-1 (CONTROL SIR- CONST. DI TYPE O J-BOTTOM, 110', SPECIAL ALT. B 3-1-8-36-0-1	(\$-60) SIA. 545-65, 50-16. Hr. HBED	COMST. INLET TIPE S INDEX NO. 220 GUITER E. 109.25	(\$-31) 57A. 81.00. (2.13' LT. HAMP C-2 COOST PINET 17PE S HADEN HOD. 220	CRAFE E. 113.67 F.L. E. 109.00 (N) (19" BCCAP) SEE SHEET 100 FOR DETAILS
(COST, WITHER END SECTION INGEX NO. 272 DO 124" RCP)	CONST. IMLET THE P. I INDEX NO. 200 & 210 COTTEM EL. 81.53	F.L. EL. 76.50 (18" BCCUP)	CONST. WITERED END SECTION INDEX NO. 272 F.L. St. 81.75 fig. 800MP)	(\$-13) STA. 619-05, 22-13 RT. 58NO CONST. INCT TIPE 5
F.L. E. 75.40 H) (24" RCP)	F.L. EL. 83.00 (18" RCP)	\$-43 S14. 631-70.3. 91. RT. 5880 (\$-43 S14. 631-70.3. 91. RT. 5880	SEE SAFET TOO FOR DETAILS	(5-12) 514. 222.501. 59.5. L1. HAND COMPST. WITERED END SETTION INDEX NO. 272.
(\$-105)574, 610-10, 71' RT. SIND CONST. OHI TYPE O W/TRAV. SLOTS 1605 M.O. 232.	SEE SHIET 100 FOR DETAILS (5-59) STA. 119-00, TO' RT, RAW A CONST. MITTER BIO SECTION	CONST. INLET TIPE S INDEX NO. 220 GUTTER EL. 86.87	(\$-29) \$714. 79-25, 10.13' LT. RAMP C-2 CONST. INCET TIPE 5	CHATE EL. 69.99 F.L. EL. 72.70 (N) (18" PCP)
SALOS TANA TANA TANA TANA TANA TANA TANA TAN	CONST. INLET TIPE S INDEX NO. 220 GUTTER EL. 94.02	HOCK NO. 277 F.L. EL. 76.50 (16" SCOP)	CONST. MITERIED END SECTION (MOEX NO. 272 F.L. EL. 76.5 (18" RCP)	S-1) STA, 222-50, 6-13' RT. RAMP II
GRATE EL. 74.DD (NSS 1.48" RCP.1	INDEX NO. 272 F.L. EL. 75.00 (18* BCCLP)	SEE SHEET 182 DONG DETAILS (S-4) STA. 630-00, 91' BT. SINO	F.L. EL. 77:30 (W) (16- 900)	(S-10) STA. 224-50, 120' LT. HAMP B CONST. U-TTPE ENDHALL BYBAFFLES INDEX MG. 261
(5-10) STA: 56-30, 108 'LT. RAM" C-1 COOST, 001 TIPE 0-3 WATRAY. SLOTS ALT. B 3'-4'2'6'-0'	SEE SHEET 100 FOR DETAILS (S-SE) STA. 135-70, 120' RT. RAMP A	(3-40)SIA: 630-00, 22.13" FIT. 30M2 COMST. INCET TIPE S INCET MO. 220 GUTTER C. #1.33	(5-27) STA. 208+90, 6.13' RT. RAMP C.	INDER NO. 220 CRAFE EL. 97.84 F.L. EL. 85.5 (M. 118- RCP)
CONST. WITERD BAD SECTION (MCK NO. 272 F.L. E., 74.00 (48 - RCP)	(5-55) STA. 135-70, 21,13' RT. RAM" A CONT. INLET TIPE S INDEX NO. 220	INDEX NO. 272 INDEX NO. 272 F.L. EL. 76.50 IIN BCCNF)	(S-26) STA. S12-45, 85' RT. NOMO CONST. MITTHEO END SECTION INDEX NO. 272	(5-9) STA. 220-50, B.13" RT. PARP II
1405x NO. 272 -1. E. 74.00 (48" RCP)	INDEX NO. 272 INDEX NO. 272 F.L. EL. 85.40 (10- BCCAP)	SEE SHEET 100 FOR DETAILS	1505 X NO. 2 27 CHATE EL. 83 TE 18 REP F.L. 170 CCO DETAILE	(S.E.) STA, S12:90, 84' RT. SBWD
(5-10) 5.714, 5.047, 5.	SER SHEET 199-60	(\$-38 574. 626-50, 22-13' PT. 5880 CONST. INCE TYPE S INCE TYPE S INCE TYPE S CONST. INCE TYPE S	(3-25) 514, 513-00, 22-13, fft. 1600 (0-25) 514, 513-00, 22-13, fft. 1600	CONST. JACET TYPE S JACEX NO. 220 GARIE E. 103.50.
S-104 STA. SO-00, 83.5" RT. RAMP C-1	(5-53) STA. 130:00, 21:13' RT. RAMP A. CONST. INCET TYPE S.		(\$-24 574, 515.00, 59° NT. MBMD CONST. MITCHEE END SECTION HIGEN NO. 272	F.L. Et. 101.00 (NSS) (10- NCP)
(\$-10.574) SHE CON 150.27 FT HEND NORY NO. 277 LAND SECTION FL. Et. 74.00 (48 * RCP)	(5-52) ST4. (4-50, 84' LF, RAP 4-1 CONST. WITERED END SECTION INDEX NO. 272 F.A. EL. 76-50 (E) 11E" BECKET	(5-17) STA, 222-55, 248" U. 1-4 CONST. MITHED END SECTION 110ER NO. 272	INDEX NO. 220 GRATE EL. 90.44 F.L. EL. EZ. 00 (EJ 118" NOP)	(5-6) STA. BIA-00, 48.13" LT. SUND CONST. INCL TIPE S INDEX NO. 220
18057 No. 272 18057 No. 272 7-1- EL- 74-00 (48- RCP)	F.L. EL. 85,50 ESI (18" BCCAP! SEE SHEET 100 FOR DETAILS	(NOEX NO. 272 F.L. EL. 76.50 (II" BCCLP)	(\$-23) 574. 515-00, 22.1.1. NFM	(MDEX NO. 720 GRATE EL, 110,35 F-L, EL, 106,00 IS) (18" RCP)
(\$-102) 514, 613, 100, 116, 57, 117, 118, 100, 116, 116, 116, 116, 116, 116, 116	(5-51) STA, 14-50, 6-13" LT. RAMP A-1 CONST. INLET TIPE S (NDEX NO. 220	(5-57) STA, 624-475, 113' RT, SBWD	(5-22) STA. 56-00, BY. HT. BAUP C-	(5-5) STA. 515-00. 40.13' LT. 59/10
(\$-10) \$14. 618-30, 134-5. NT. 3840 (\$-10) \$14. 618-30, 134-5. NT. 3840 (\$-10) \$12. 618. 618. 618. 618. 618. 618. 618. 618	CONST. WITERED END SECTION INDEX NO. 572 F.L. EL. EL. SO. (16" BCCAP)	CONST. DOI 1YPE D W/TRAY. SLOT 110EX NO. 222 ORATE EL. 81.20	140Ex NO. 25.0 GATE EL. 91.71	CONST. IN.E: TYPE S IMPEX NO. 220 GRATE EL. 100. I
(\$-100)\$714. All 45-60, 141.5. LT. SBMD CONST. ALI FREDE END SECTION FILE. LL. 75:00.156- MCD.	CUTTER IL. 98.08 CUTTER IL. 98.08 F.L. E., 91.50 (W) 118 BCCAPI SEE SHEET 100 FON DETAILS	CUTTER EL. 107.39 F.L. EL. 102.00 IE1 (18- BCCMP) SEE SHEET 100 FOR DETAILS	S-21 STA. EL. 16.5 114 - BCCAP.) (S-21 STA. 56-00, 6-13' RT. RAMP C-)	45 CONST. INET TYPE S FI. EL. 75.30 (24" RE) CONSTRUCTION OF OTHERS
	(5-19) 514, 12:00, 6:13, UT. PAMP A-1 CONST. IMAET TYPE 5	(5-36) STA. 624-31, 22.13* RT. 5810 CONST. 1026 THEE 5	SEE SHEET 100 FOIL OF SECURITY (5-70) STA. SB-00. 96" AT. RAM" C-1 CONST. JITERSO FID SECTION	Charle Et. 92.61
	S-48 STR. 300-50, ILS. LT. ABID COURT, WITRED END SECTION INDEX NO. 372	Const. MITHER EN SECTION FOR THE FOR STATE OF THE FORESTON FOR THE FORESTON TO THE FORESTON THE FORESTON TO TH	CONST. INCT TIPE 5 CANT. INCT TIPE 5 CANTE (L. 18.73	(5-2) 514. 232-35. 10.13" HT. RAMP B COMST., IM.CT TIPE S INDEX NO. 220
CONST. THE F F I HELD NO. 200 & 210 CONTROL NO. 200 & 210 CONTROL NO. 200 & 210 CONTROL NO. 200 CONTROL NO.	CONST. MARKET FYE P-7 THUE X MA. 200 A 201 THE EL. 100.30 THE EL. 100.30 THE EL. 100.30	COAST, OB THE C. WITAN, SLOT INDEX NO. 252 ORATE EL. 60.00 F.L. EL. 77.40 IN) IN-REPI	(5-46) 574. 519-72. 147. NP.D. COMPS. MITTERS (40) 52CT (0N) F.L. EL. 76-5 (19" DCCMP)	(5.1) 514, 233-50, [0,13] PT. RAM 0 (2045) 1, 1444 TPPE 5 (1964) 100, 220 (RAME L. 16.1) 110- RCP)
	((
2				

TATE

1

STATE PROLING. SHIRT WORLD DRIVE EXT. 71-4 INTERCHANG PLAN 10 STA. 234-00 TO STA. 248-00 PLAT NOTE: SEE RAMP TERMINAL DETAIL PC STA. 841-00.68 MATCH LINE SEE PLAN 9

STATE PROJ.NO. SHEET WORLD DRIVE EXT. / 1-4 ICHC PROFILE - RAMP D STA. 423.00 TO 437-00 19.40 436 E L 435 -SPECIAL DITCH LE. 1-10-D HOUSE LPA 5.03 THE NEW 3.23 THE COURT OF STATE O 62.84 FILE OR DE LINE .b. 24. SKE RALP TERMINEL DETAIL. 430 10 TO THE TOTAL TO ١ 82 (g.18) B0.00 2 5/0 355' SUPERE, TRANS EXISTING GROUND LINE 1-10.2 SPECIAL DITOR LT. 0.69 .t. ft. LATE AT MACHINE PATE LIKE & GERTTER e - 0.098 BO 26 2

384 WORLD DRIVE EXT. / 1-RAMP C-2 CROSS SECTIONS 94 00 00 00 00 00 00 SCALE. 92 94+ 6 93 95 HATE 1800 0 RALP RAND 1:81 101 Mit if Asks on and file and

8 c . 9 = 435+00 0 × 434+00 * 433+00 436+00 " STA, 848+14. 3 RAMP 25.61 27. 19 E 23 = 3 22 0 11 430+00 431+00 432+00 STA. 843-13 77 STA. 439-58 CENTER INE ELEV. 74.4 RAMP RAMP 0.61 01.01

State Project No 92130-3420

(8) (=) (%) (3) MES FL 70.20 (3) (2) (2) (3) (2) (2) (2) (2) 3 (2) 3 3 3 **(5) (3)** (E) (E) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) KES 6.5 MES FL 76.5 (a) (a) (A) (B) (a) (b) (c) (F) (P) (F) (F) NES FL 76.5 LES FL 76.5 (3) (E) (E) (2) (3) (a) (a) (a) (a) (2) (2) (%) FL 85.4 FL 85.4 FFL 81.5 FFL 76.0

INET, 24" RCP (32) INET, 19" RCP (64) INET, 11" RCP (64) INET, 10" RCP	MANDICE, 24' RCP (33) INLET, 10" RCP (65) INLET, 11" RCP (65) INLET, 10" RCP (65) INLE	HMET. 18" RCP. WES (15) IMET. 18" RCP. (66) ET. 93.20 (78) ET. 93.50 (78) ET. 93.50 (78) ET. 94.50 (78) ET. 94.50 (78) ET. 94.50 (78) ET. 94.50 (78)	(138) INLET, 24" RCP, LES (54) INLET, 24" RCP (67) RT INCT, 24" RCP (67)	(136) IM.ET. 18- RCP (155) IM.ET. 24" RCP (156) IM.	(156) INLET, 30" RCP (MATE EL. 55.50 W FL 175.50	NES (170	(39) RES. (19) JALET, 14" REV. RES. (17) RES.	(40) MES (59) HART, 30" RCP (77) HART (77	(42) INLET. 18- RCP (50) INLET. 19- RCP (73)	(6) INET. 18 - RCP (14) INET. 18 - RCP (15) IN	(62) MES (12) MES (13) MES (14) MES (14) MES (15) MES (15	8 FL 19.25 S FL 80.66	(20-10 (42)
INLET, 24- RCP CRATE EL. 84.61 N FL 80.36 S FL 80.15	INLET, 24" RCP ORATE EL: 84.38 E. FL. 80.15 W. FL. 80.10	MANHOLE, 30° RCP RIM EL, 86.05 N FL 79.60 S FL 79.21	MES. 30-RCP W FL 83.38 E FL 83.28	INET, 18-RCP GANE, EL. 92-10 FL 80-00 E FL 87-81	INLET, 19-RCP ORATE EL, 96.35 W FL 87.36 E FL 87.36	INLET, 18 T RCP GRATE EL. 101.70 S FL 87.36 H FL 85.75	MANNOLE, 24" RCP RIM EL, 90.50 W FL 85.75 E FL 85.30	MANHOLE, 24" RCP RIM EL, 112.90 H FL 105.00 S FL 85.30	INLET, 24" RCP GRATE EL. 105-43 5 FL 105-00	(74) BLEED-DORM STRUCTURE +1 (75) BLEED-DORM STRUCTURE +2	(17) BLEED-DOWN STRUCTURE +3	(19) BLEED-DOWN STRUCTURE +5	
(179) MANHOLE, 18" RCP R IM EL. 112.9 R FL. 105.00 S FL. 105.00	(10) MANGEL, 24. RCF THE ELS 91.00 S FL 95.30	(8) MES, 24" RCP (8) NFT, 24" RCP	(GANTE EL, 110.18 F FL 105.43 (183) IMLET, 18" RCP	(F L 85.4) F L 85.4) ((64) waveput, 16" RCP, LES	RIM EL. 90.00 R FL 65.41 R FL 64.86 (165) NES	(86) CONTROL STR. MES	K FL 86.27 S FL 86.27 (93) CONTROL STR.	(INTEL, 18- RPP, MES CONTROL EL. 69.00 E FL 81.98 W FL 81.60	(168) GROSS DRAIN MES, 30" RCP, MES E FL 82.25	(18) IN.ET. (18" RCP GALTE EL. 101.70 S FL 87.35		***************************************	X
92130-5420												411114	My Star

SET 1 OF 6
FINAL "AS-BUILT" PLANS
FIN: 242531-1-52-01
FAPN: 00422251
OSCEOLA COUNTY
STATE ROAD NO. 400
Roadway Plans
(Sheets 1 thru 279)

FINANCIAL PROJECT ID 242531-1-52-01 W.P.I. NO. 5147335 DATE: 10/24/02

STRUCTURE		DESIGN	DESIGN FLOOD	BASE	BASE FLOOD	OVE	OVERTOPPING	SNI		15	GREATEST	72	
	STATION	2%. PR08.	SO YR.FREG.	IX PROB.	100 YR.FREQ.		FLUUD				FLUUD		i
	١	DISCHARGE	STAGE	DISCHARGE	STAGE	DISCHARGE	STAGE	FROB.	FREG.	DISCHARGE	STAGE	P908.	FREQ.
S-19 121+	121+27.81	50.50	87.40	55.00	87.44			Ċ		64.00	87.62	0.2	200
S-25A 1926-	1926+00.26	250.00	89.85	265.14	90.29					300.00	91.29	0.2	200
S-24A 356+96.12	36.12	340.00	89.32	355.46	89.72					388.00	90.59	0.2	200
S-24C 849+78.38	78.38	340.00	88.56	355.46	88.90				Ī	388.00	89.63	0.2	500
5-2322 854 +50.16		340.00	79.78	355.46	96.78					388.00	88.58	0.2	200
S-224 503+36.86 340.00	+36.86	340.00	86.89	355.46	87.09					388.00	87.52	0.2	500
S-21 1502	502+17.40	340.00	90.98	355.46	86.20				ij	388.00	86.49	0.2	200
									Ī				

WATER SURFACE ELEVATIONS WHICH MAY BE ANTICIPATED IN ANY GIVEN YEAR. THIS DATA WAS GENERATED USING HIGHLY VARIABLE FACTORS DETERMINED BY A STUDY OF THE WATERSHED. MANY JUDGEMENTS AND ASSUMPTIONS DATA ARE CAUTIONED AGAINST THE ASSUMPTION OF PRECISION WHICH CAN NOT BE ATTAINED. DISCHARGES ARE THE HYDRAULIC DATA IS SHOWN FOR INFORMATIONAL PURPOSES ONLY, TO INDICATE THE FLOOD DISCHARGES AND ARE REQUIRED TO ESTABLISH THESE FACTORS. THE RESULTANT HYDRAULIC DATA IS SENSITIVE TO CHANGES, PARTICULARLY OF ANTECEDENT CONDITIONS, URBANIZATION, CHANNELIZATION, AND LAND USE. USERS OF THIS IN CUBIC FEET PER SECOND AND STAGES ARE IN FEET, NAVD, 1988. NOTE:

DEFINITIONS:

DESIGN FLOOD: THE FLOOD SELECTED BY F.D.O.T. TO BE

UTILIZED TO ASSURE A STANDARD LEVEL

OF HYDRAULIC PERFORMANCE.

BASE FLOOD: THE FLOOD HAVING A 1% CHANCE OF BEING EXCEEDED IN ANY YEAR. (100 YR. FREQUENCY)

PREPARED BY: REC

DATE: 10/02/02

OVERTOPPING FLOOD: THE FLOOD WHERE FLOW OCCURS (A) OVER THE HIGHWAY (B) OVER A WATERSHED DIVIDE OR (C) THRU EMERGENCY RELIEF STRUCTURES.

GREATEST FLOOD: THE MOST SEVERE FLOOD WHICH CAN BE

ABLE, TOLY

PREDICTED WHERE OVERTOPPING IS NOT PRACTICABLE, NORMALLY ONE WITH A 0.2% CHANCE OF BEING EXCEEDED IN ANY YEAR. (500 YR. FREQUENCY)

NO.

FLOOD DATA

MICE		szu Pu		
Prop. Ditch		Wet/6		1 50 2 to
	lane I	2000	H.	tooks
3.5	West	200	A reg	
70e of Sh	7 7		od Limits-	VIEW
RIW	Bound	Ramp		PLAN
No. of	S-3 CKISE ER	M/a	Scale in Feet	Oate: 3/17/81
	of 510pe 7-2 R/W Slope 5-2 Septe 5-1 Septe 5-1	Slope Slope Slope Slope Slope Slope Slope Slope Slope Stope Slope Slope Stope Stope Slope Stope	Slope of Slope fixed and Lane I-4 fixed bound Lane I-4 wetland wetland wetland wetland wetland wetland wetland wetland of Slope wetland fines	Scale in Feet RIW Scale in Feet RIW Scale in Feet RIW RIP AND RIP AN

MP 2.929

CD-19

512535

04-NOV-2002 14:12

VORUMOOVprowork VOBS V3467INTECHPROD Cod VAS-BUILT VELAURDOZ.don